
One of the most important contributors to the on-going efficiency and
health of your DB2 environment is proper management of DB2
access path changes. A thorough REBIND management process is a
requirement for healthy DB2 applications.

 Craig S. Mullins
Return to Home Page

October / November 2006

 zData Perspectives
by Craig S. Mullins

To Rebind or Not To Rebind, is That a Question?

http://softwareonz.com/page18.html
http://www.craigsmullins.com/
http://www.zjournal.com/index.cfm?section=article&aid=718

But many shops do not do everything possible to keep access paths
up-to-date with the current state of their data. Approaches vary, such
as rebinding only when a new version of DB2 is installed, whenever
PTFs are applied to DB2, or to rebind automatically after a regular
period of time. Although these methods are workable, they are less
than optimal.

The worst approach though is the “if it ain’t broke don’t fix it”
mentality. In other words, never REBIND unless you have to. The
biggest problem it creates is that it penalizes every program in your
subsystem for fear of a few degraded access paths. This results in
potentially many programs having sub-optimal performance because
the optimizer never gets a chance to create better access paths as
the data changes. Of course, the possibility of degraded performance
after a REBIND is real – and that is why some sites have adopted
this approach.

Even so, the best approach is to perform regular REBINDs as your
data changes. To do so, you should follow the Three R’s. Regularly
reorganizing to ensure optimal structure; followed by RUNSTATS to
ensure that the reorganized state of the data is reflected in the DB2
Catalog; and finally, rebinding all of programs that access the
reorganized structures. This technique can improve application
performance because access paths will be better designed based on
an accurate view of your data.

Of course, adopting the Three R’s approach raises questions, such
as “When should you reorganize?” To properly determine when to
reorganize you’ll have to examine statistics. This means looking at

either RUNSTATS in the catalog or Real-Time Statistics (RTS). So,
the Three R’s become the Four 4 R’s – RUNSTATS (or RTS),
REORG, RUNSTATS, then REBIND.

Some organizations do not rely on statistics to schedule REORGs.
Instead, they build reorganization JCL as they create each object –
that is, create a table space, build and schedule a REORG job, and
run it monthly or quarterly. This is better than no REORG at all, but it
is not ideal because you are likely to be reorganizing too soon
(wasting CPU cycles) or too late (causing performance degradation
until REORG).

It is better to base your REORGs off of thresholds on catalog or real-
time statistics. Statistics are the fuel that makes the optimizer
function properly. Without accurate statistics the optimizer cannot
formulate the best access path to retrieve your data because it does
not know how your data is currently structured. So when should you
run RUNSTATS? One answer is “as frequently as possible based on
how often your data changes.” To succeed you need an
understanding of data growth patterns – and these patterns will differ
for every table space and index.

The looming question is this: why are we running all of these
RUNSTATS and REORGs? To improve performance, right? But only
with regular REBINDs will your programs take advantage of the new
statistics to build more efficient access paths.

Without an automated method of comparing and contrasting access
paths, DB2 program change management can be time-consuming

and error-prone – especially when we deal with thousands of
programs. And we always have to be alert for a rogue access path –
that is, when the optimizer formulates a new access path that
performs worse than the previous access path.

Regular rebinding means that you must regularly review access
paths and correct any “potential” problems. Indeed, the Four R’s
become the Five R’s because we need to review the access paths
after rebinding to make sure that there are no problems. So, we
should begin with RUNSTATS (or use RTS) to determine when to
REORG. After reorganizing we should run RUNSTATS again,
followed by a REBIND. Then we need that fifth R – which is to review
the access paths generated by the REBIND.

The review process involves finding which statements might perform
worse than before. Ideally, the DBAs would review all access path
changes to determine if they are better or worse. But DB2 does not
provide any systematic means of doing that. There are tools that can
help you achieve this though.

The bottom line is that DB2 shops should implement best practices
whereby access paths are tested to compare the before and after
impact of the optimizer’s choices. Only then can the question posed
in the title of this column go away…

From zJournal, Oct / Nov 2006
.

http://www.zjournal.com/

© 2006 Craig S. Mullins, All rights reserved.

Home.

http://www.craigsmullins.com/

