
 Craig S. Mullins
Return to Home Page

June/July 2003

 zData Perspectives
by Craig S. Mullins

DB2 and the Old Dipsy Doo

By Craig S. Mullins

One of the biggest problems DBAs face when they are managing large partitioned
DB2 table spaces is contending with non-partitioned indexes. Well, here comes IBM
on its white horse with DB2 Version 8 to fight those problems with the old dipsy doo;
in this case, dipsy is more appropriately spelled "DPSI."

However, before we examine the solution, let's first investigate the problem in a little
more detail.

Non-Partitioned Indexes (NPIs)

In order to define a partitioned table space in DB2, a partitioning index is required.
The CREATE INDEX statement specifies the range of values that DB2 will store in
each specific partition. The partitioning index will have individual PART clauses,
each which specifies the highest value that can be stored in the partition. To
illustrate, consider Figure 1, which shows the CREATE statement for a partitioning
index. This creates four partitions. Behind the scenes, DB2 will create four separate

http://www.craigsmullins.com/

data sets – both for the table space data and for the index data. However, every
other index defined on the table will be a "regular" DB2 index – that is, a non-
partitioning index (NPI). This index resides in a single data set unless the
PIECESIZE clause is used to break it apart – and even then the data will not be
broken apart by partition.

Figure 1 – The CREATE Statement for a Partitioning Index

CREATE INDEX XEMP2
ON DSN8710.EMP (EMPNO ASC)
USING STOGROUP DSN8G710
PRIQTY 36 ERASE NO CLUSTER
 (PART 1 VALUES('H99'),
 PART 2 VALUES('P99'),
 PART 3 VALUES('Z99'),
 PART 4 VALUES('999'))
BUFFERPOOL BP1
CLOSE YES
COPY YES;

NPIs can cause contention, particularly with DB2 utilities. You can run a utility
against a single table space or index partition, but you do not have that luxury with
NPIs because they are not partitioned. You can minimize and manage downtime by
running utilities a partition at a time. However, running utilities against NPIs can
impact an entire table space. Additionally, contention on NPIs can cause
performance bottlenecks during parallel update, insert, and delete operations.

Data Partitioned Secondary Indexes (DPSIs)

In Version 8 of DB2, IBM introduces the Data Partitioned Secondary Index (usually
shortened to DPSI and pronounced "dipsy"). DPSIs are significant because they
help to resolve the problems involved with NPIs that I just discussed. A DPSI is
basically a partitioned NPI.

Therefore, with a DPSI the index will be partitioned based on the data rows. The
number of parts in the index will be equal to the number of parts in the table space –
even though the DPSI is created based on columns that are different from those
used to define the partitioning scheme for the table space. Therefore, partition 1 of
the DPSI will be for the same rows as partition 1 of the table space, and so on.

These changes to DB2 V8 provide many benefits including:

· The ability to cluster by a secondary index

· The ability to drop and rotate partitions easily

· Potentially less overhead in data sharing.

NPIs historically have caused DB2 performance and availability problems, especially
with utilities. DPSIs solve many of these problems. With DPSIs there is an
independent index tree structure for every partition. This means that utilities do not
have to share pages or index structures. In addition, logical drains on indexes are
now physical at the partition level. This helps utility processing in several useful
ways. For example, you can run a LOAD by partition with no contention because the
DPSI is partitioned the same way as the data and the partitioning index. Additionally,
when reorganizing with DPSIs, the BUILD2 phase is not needed. Even your
recovery procedures may be aided because you can copy and recover a single
partition of a DPSI.

However, DPSIs are not magical objects that solve all problems. Indeed, changing
an NPI to a DPSI may cause some queries to perform worse than before. Some
queries will need to examine multiple partitions of the DPSI as opposed to the single
NPI it previously used. On the other hand, if the query has predicates that reference
columns in a single partition only, then performance may improve because only one
DPSI partition needs to be probed.

Of course, not every index on a partitioned table should be a DPSI. You need to
analyze your data access and utility processing requirements to determine when to
use NPIs vs. when to use DPSIs. Before using DPSIs, you will have to examine your
queries to determine predicate usage and the potential performance impact.

Summary

This introduction to DPSIs is not comprehensive. Be sure to investigate DPSIs over
the next year so you will be ready to use them when DB2 V8 becomes generally
available. By giving us the old dipsy-doo in Version 8, IBM is solving one of the
bigger availability issues associated with DB2.

From zJournal, June/July 2003.

© 2003 Craig S. Mullins, All rights reserved.

Home.

http://www.zjournal.com/
http://www.craigsmullins.com/

