
 Craig S. Mullins
Return to Home Page

December 2003 / January 2004

 zData Perspectives
by Craig S. Mullins

DB2 V8: Sequence Objects and Identity Columns

When designing DB2 databases a frequent request is
for a column to contain sequentially generated
numbers. Every new row added to the table requires
a new value, one greater than the previous value, to
be generated. These numbers might be used as a key
or simply to differentiate data rows.

DB2 provides identity columns (V6 refresh) and
sequence objects (V8) to meet this need. Without
such features an application program can implement

http://www.craigsmullins.com/

similar functionality, but usually not in a manner that
can perform and scale properly. In this column we
will learn a little bit about each of these methods of
creating sequential values.

Identity Columns

An identity column is defined to a DB2 column using
the IDENTITY parameter. A column thusly defined will
cause DB2 to automatically generate a unique,
sequential value for that column when a row is added
to the table. For example, identity columns might be
used to generate unique primary key values or a
value that somewhat mimics Oracle’s row number
capability. When inserting data into a table that uses
an identity column, the program or user will not
provide a value for the identity column. Instead, DB2
automatically generates the appropriate value to be
inserted.

Only one identity column can be defined per DB2
table. Additionally, the data type of the column must
be SMALLINT, INTEGER, or DECIMAL with a zero scale
(or a user-defined type based on one of those data
types). You have control over the starting point for

the generated sequential values, and the number by
which the count is incremented. An example follows:

CREATE TABLE EXAMPLE
 (ID_COL INTEGER NOT NULL
 GENERATED ALWAYS AS IDENTITY
 START WITH 100 INCREMENT BY
10
 ...);

In this example, the identity column is named
ID_COL. The first value stored in the column will be
100 and subsequent INSERTs will add 10 to the last
value. So the identity column values generated will be
100, 110, 120, 130, and so on.

To retrieve the value of an identity column
immediately after it is inserted you must use the
IDENTITY_VAL_LOCAL() function. For example, run the
following statement immediately after the INSERT
statement that sets the identity value:

 VALUES IDENTITY_VAL_LOCAL() INTO
:IVAR;

The host variable IVAR will contain the value of the
identity column. But this will only work after a
singleton INSERT. You cannot use INSERT INTO

SELECT FROM or LOAD, if you need to rely on this
function.

There are other problems with using identity
columns, as well. Loading data into a table that
automatically generates identity values is
troublesome. Each LOAD will generate different
identity values. If you can live with these caveats,
then identity columns might be useful. However, in
general, these "problems" make identity columns a
very niche solution. Sequence objects are probably
more useful than identity columns. But you have to
wait for V8 to use them.

Sequence Objects

A sequence object is a separate structure that
generates sequential numbers. It is not assigned to a
single column like the identity property. A sequence
object is created using the CREATE SEQUENCE
statement.

When the SEQUENCE is created it can be used by
applications to “grab” a next sequential value for use
in a table. Sequence objects are ideal for generating
sequential, unique numeric key values. A sequence

can be accessed and incremented by many
applications concurrently without the hot spots and
performance degradation associated with other
methods of generating sequential values.

Sequences are efficient and can be used by many
users at the same time without causing performance
problems. Multiple users can concurrently and
efficiently access SEQUENCE objects because DB2
does not wait for a transaction to COMMIT before
allowing the sequence to be incremented again by
another transaction. An example creating a
SEQUENCE object follows:

CREATE SEQUENCE ACTNO_SEQ
 AS SMALLINT
 START WITH 1 INCREMENT BY 1
 NOMAXVALUE NOCYCLE
 CACHE 10;

This creates the SEQUENCE object named
ACTNO_SEQ. Now it can be used to generate a new
sequential value, for example

INSERT INTO DSN8810.ACT
 (ACTNO, ACTKWD, ACTDESC)

 VALUES (NEXT VALUE FOR ACTNO_SEQ,
‘TEST’, ‘Test activity’);

The NEXT VALUE FOR clause is known as a sequence
expression. Coding the sequence expression causes
DB2 to use the named SEQUENCE object to
automatically generate the next value. You can use
the PREVIOUS VALUE FOR sequence expression to
request the previous value that was generated, too.

Like identity columns, sequence objects also have
parameters to control the starting point for the
generated values and the number by which the count
is incremented. Additionally, you can specify how the
SEQUENCE should handle running out of values
when the maximum value is hit.

As you can tell by now, sequence objects are more
flexible and generally useful than identity columns.
Unlike sequence objects, identity columns must
adhere to certain rigid requirements. An identity
column is always defined on a single table and each
table can have at most one identity column.
Furthermore, when you create an identity column,
the data type for that column must be numeric; not
so for sequences. If you used a sequence object to

generate a value you could put that generated value
into a CHAR column, if you wish.

Summary

DB2 provides us with several options for generating sequential values for our tables.
Identity columns and sequence objects make designing DB2 database and
applications easier than ever before. Be sure to understand the unique advantages
these features offer

From zJournal, December 2003 / January 2004.

© 2003 Craig S. Mullins, All rights reserved.

Home.

http://www.zjournal.com/
http://www.craigsmullins.com/

