
 Craig S. Mullins
Return to Home Page

April / May 2004

 zData Perspectives
by Craig S. Mullins

Materialized Query Tables and the Death of
Denormalization

DB2 V8 offers a very useful new feature known as
Materialized Query Tables (MQTs). Though not
exclusively for data warehousing, MQTs can improve
the elegance and efficiency of DB2-based data
warehouses. An MQT can be thought of as a view that
has been materialized – that is, a view whose data is
physically stored instead of virtually accessed when
needed. Each MQT is defined as a SQL query (similar
to a view), but the MQT actually stores the query

http://www.craigsmullins.com/

results as data. Subsequent user queries that require
the data can use the MQT data instead of re-
accessing it from the base tables. By materializing
complex queries into MQTs and then accessing the
materialized results, the cost of materialization is
borne only once, when the MQT is refreshed.

So, you might consider using MQTs for your existing
complex queries. But another approach is to consider
using MQTs instead of denormalization. Instead of
denormalizing, implement fully-normalized tables
and then build MQTs where you would have
denormalized. With MQTs you can get the best of
both worlds: fully normalized tables to ensure data
integrity during modification and MQTs for efficient
querying.

But there are potential drawbacks to using MQTs, in
terms of data currency, resource consumption, and
administration. First of all, MQTs are not magic; they
need to be refreshed when the data upon which they
are based changes. Therefore, the underlying data
should be relatively static. Additionally, MQTs
consume disk storage. If your shop is storage-
constrained you may not be able to create many

MQTs. Finally, keep in mind that MQTs need to be
maintained. If data in the underlying base table(s)
changes, then the MQT must periodically be
refreshed with that current data.

There are two methods for creating an MQT: you can
create it anew starting from scratch using CREATE
TABLE or you can modify an existing table into an
MQT using ALTER TABLE. The first method uses the
CREATE TABLE statement using syntax that has been
augmented to look like a view definition. Consider,
for example:

CREATE TABLE DEPT_SAL
 (DEPT, TOTAL_SALARY, TOTAL_BONUS,
TOTAL_COMM, TOTAL_COMPENSATION,
 EMPLOYEES)
AS (SELECT WORKDEPT, SUM(SALARY), SUM(BONUS)
SUM(COMM),
 SUM(SALARY+BONUS+COMM), COUNT(*)
 FROM DSN8810.EMP
 GROUP BY WORKDEPT)
DATA INITIALLY DEFERRED REFRESH DEFERRED
MAINTAINED BY SYSTEM DISABLE QUERY
OPTIMIZATION;

The SELECT statement defines the MQT data. So far,
so good - this statement looks like a CREATE VIEW
statement, except we are creating a table. Following

the SELECT statement though, are several parameters
that define the nature of the MQT. There are
parameters for deferring data population and to
specify whether the MQT is to be maintained by the
system or the user. You can also specify how DB2 will
use the MQT for query optimization. The choice you
make will impact the type of SELECT that can be used
by the MQT being defined. The default option is to
ENABLE QUERY OPTIMIZATION.

But there are limits on the type of SELECT statement
that can be used for query optimization. Optionally,
you can DISABLE QUERY OPTIMIZATION. Of course,
this means that the MQT cannot be used for query
optimization, but it can be queried directly.

As of DB2 V8, when an MQT is created, data is not
initially populated into the table. Most MQTs will be
maintained by the system, and as such, data will be
populated when the REFRESH TABLE statement is
executed. If the MQT is specified as MAINTAINED BY
USER though, it can also be refreshed using the LOAD
utility, INSERT, UPDATE and DELETE, as well as by
REFRESH TABLE.

MQTs are fascinating because the DB2 optimizer
understands them. Your queries can continue to
reference base tables, but DB2 may access an MQT
instead. During access path selection, the optimizer
examines your query to determine whether query
cost can be reduced by replacing your table(s) with an
MQT. The process undertaken by the DB2 optimizer
to recognize MQTs and then rewrite the query to use
them is called automatic query rewrite (AQR).

EXPLAIN will show whether AQR was invoked to use
an MQT. If the final query plan comes from a
rewritten query, the PLAN_TABLE contains the new
access path using the name of the matched MQTs in
the TNAME column. Also, TABLE_TYPE will be set to
'M' indicating an MQT was used.

The optimizer is somewhat aware of the freshness of
system-maintained MQTs. AQR will be used for a
system-maintained MQT only if a REFRESH TABLE has
occurred. Of course, the MQT may not be up-to-date,
but DB2 knows that the MQT was refreshed at least
once.

This brief overview of MQTs should help to show how
DB2 V8 can optimize access to complex data

structures. With MQTs, DBAs can create a fully
normalized physical database implementation – and
then create “denormalized” structures using MQTs.
This brings the benefit of data integrity because the
database is fully normalized, along with the speed of
retrieval using materialized query tables.

From zJournal, April / May 2004
.

© 2004 Craig S. Mullins, All rights reserved.

Home.

http://www.zjournal.com/
http://www.craigsmullins.com/

