
 Craig S. Mullins
Return to Home Page

February / March 2005

 zData Perspectives
by Craig S. Mullins

DB2 Annoyances

If you are a regular user of any type of software you know what I mean by
an “annoyance.” Annoyances are those little things software does to drive
intelligent people crazy. There isn’t a piece of commercial software out
there that is not plagued with annoyances and DB2 has its fair share of
them. Let’s examine a few.

Triggers: DB2’s implementation of triggers has some aspects that are
quite annoying. The first trigger annoyance is one that catches every new
trigger user – and that is the requirement to first change the SQL
terminator before you try to issue the CREATE TRIGGER statement. This is
required because a trigger is composed of SQL statements, each of which
is terminated by a semi-colon; but the CREATE TRIGGER statement is also
a SQL statement and it needs to be terminated, too. If you use the same

http://www.craigsmullins.com/

SQL terminator, which defaults to a semi-colon, then DB2 gets “confused”
and will refuse to create the trigger. The usual workaround is to use a
semi-colon in the trigger text and change the SQL terminator for the UOW
that executes the CREATE TRIGGER statement.

The exact way you specify a different SQL termination character depends
on how you are issuing your SQL. For example, using DSNTEP2 you can
specify SET TERMINATOR TO in a comment to use a different character to
terminate the SQL. For example:

--#SET TERMINATOR #
CREATE TRIGGER...
 <code of trigger goes here>
#

That way the # character is read as the end of the CREATE TRIGGER
statement (it would work the same way for any other SQL statement in
the DSNTEP2 input). If you are working with DB2 on Linux, Unix, or
Windows platforms you can use the command -td# in the Command Line
Processor (CLP) to change the termination character. Or if you are using
DB2 Control Center you can select the 'Tools Settings' option from the
'Tools' pull-down menu. Once there, check the box next to the line labeled
'Use statement termination character' and supply the character you wish
to use in the little prompt box to the right of the line.

But the terminating the SQL statement is not the only annoyance when it
comes to DB2 triggers. It is also very annoying that you cannot create a
trigger specifying EXPLAIN YES for the SQL in that trigger at the same
time. There is no EXPLAIN option for the CREATE TRIGGER statement, so
the package that is created for the trigger is not explained. The way
around this is to immediately follow your CREATE TRIGGER statement
with a REBIND TRIGGER PACKAGE statement specifying EXPLAIN(YES). It
works, but of course, it is annoying.

LOBs: After dealing with triggers, LOBs are probably the next most
annoying part of managing DB2 databases and applications. LOB (stands
for Large OBject) and it refers to a series of data types (BLOB, CLOB, and
DBCLOB) that can be used to store very large multimedia data in DB2
tables. But the implementation for LOBs in DB2 seems to me to be a bit
incomplete. Why is that?

Well, let’s start with the problem that there is no easy way to LOAD them.
If the total length of the LOB column and the base table row is less than
32KB, you can use the LOAD utility to populate the data into DB2. If the
LOB column is greater in size you must use INSERT or UPDATE
statements. That means you have to write a program to load LOBs into
the database, and who wants to do that?

But that isn’t the only LOB problem. A REORG of a LOB table space does
not reclaim physical space. Reorganizing a LOB table space can help to
improve the effectiveness of prefetch though, because it removed any
embedded free space and will attempt to make the LOB pages
contiguous.

Finally, and perhaps most annoying in the true sense of the word, is the
need to create a unique index on the auxiliary table. The auxiliary table is
the table in the LOB table space that holds the LOB data. The index is
required. But why does the DBA have to create that index? No columns
are specified and the index is mandatory. The CREATE statement will look
something like this:

CREATE UNIQUE INDEX indexxname ON auxtab;

Couldn’t DB2 create it automatically “behind the scenes” when the
auxiliary table is created? There is no reason for DB2 to force the DBA to
create this index.

Other Annoynaces: There are several more things that annoy me about
DB2, but none are as annoying as triggers and LOBs. A somewhat
annoying documentation aspect is that the SQL examples in the DB2
manuals are far too simple. In some cases, the examples are so simple
that users do not utilize the available features as effectively as they could.
For example, consider the simple examples used for CASE statements
and table expressions. Additionally, the DSNZPARMs are not very well-
documented. The best source for DSNZPARM information is in an
appendix in the Installation Guide that includes links to descriptions in
the manual. Of course, additional information is spread throughout the
rest of the DB2 manuals, too. I’d really like to see a separate,
comprehensive DSNZPARM manual.

In this column we’ve looked at just a few of the DB2 annoyances that
drive me crazy. If I missed your favorite, please share it with me at
craig@craigsmullins.com.

From zJournal, February / March 2005
.

© 2005 Craig S. Mullins, All rights reserved.

Home.

mailto:craig@craigsmullins.com
http://www.zjournal.com/
http://www.craigsmullins.com/

