
 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

TOAD World 

How to Assure Data Integrity in DB2 for z/OS 

By Craig S. Mullins 

DB2 provides mechanisms to automatically enforce and 

maintain the integrity of data as it is added to, and 

modified within DB2 tables. The simplest form of data 

integrity enforcement available to DB2 is with data typing. 

By choosing the appropriate data types DB2 will force 

columns to contain only the proper form of data (e.g. 

character, numeric, date, etc.). Of course, DB2 offers more 

sophisticated forms of ensuring data integrity, too. 

Features such as referential integrity, check constraints, 

triggers, validation routines, and edit procedures all can 

be used to ensure the integrity of DB2 data. 

Automatically enforcing DB2 data integrity is usually a 

wise choice of action because it offloads such work from 

application programs. Additionally, DB2-enforced data 

integrity will be applied for both planned and ad hoc 

modifications. 

Referential Integrity 

When translating a logical model to a physical DB2 database 

the relationships are implemented as referential 

constraints. To define a referential constraint you must 

create a primary key in the parent table and a foreign key 

in the dependent table. The referential constraint ties the 

primary key to the foreign key. The table with the primary 

key is called the parent table and the table with the 

foreign key is called the dependent table (or child table). 

Referential integrity (RI), therefore, can be defined as a 

method of ensuring data integrity between tables related by 

primary and foreign keys. When RI is implemented between 

tables DB2 will guarantee that an acceptable value is 

always in each foreign key column based on the data values 

of the primary key columns. 

RI defines the integrity and usability of a relationship by 

establishing rules that govern that relationship. The 

combination of the relationship and the rules attached to 

that relationship is referred to as a referential 

constraint. The rules that accompany the RI definition are 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

just as important as the relationship to ensure correct and 

useful DB2 databases. 

The RI rules defined for each referential constraint are 

specified to determine how DB2 will handle dependent rows 

when a primary key row is deleted or updated. For example, 

when a primary key is deleted that refers to existing 

foreign key values, the rule specifies whether DB2 should 

void the primary key deletion, delete the foreign key 

values too, or set the foreign key values to null.  

The concept of RI can be summarized by the following "quick 

and dirty" definition: RI is a guarantee that an acceptable 

value is always in each foreign key column. Acceptable is 

defined in terms of an appropriate value as recorded in the 

corresponding primary key, or a null. 

Two other important RI terms are parent and child tables.  

For any given referential constraint, the parent table is 

the table that contains the primary key and the child table 

is the table that contains the foreign key.  Refer to 

Figure 1 below.  The parent table in the employs 

relationship is the DEPT table.  The child table is the EMP 

table.  So the primary key (say DEPTNO) resides in the DEPT 

table and a corresponding foreign key of the same data type 

and length, but not necessarily the with same column name 

(say WORKDEPT), exists in the EMP table.  

 

EMP

DEPT

employs

 

Figure 1. A relationship between two tables. 

As a general rule of thumb it is a good physical design 

practice to implement referential integrity using database 

constraints instead of trying to program integrity into 

application programs. Using database RI will ensure that 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

integrity is maintained whether data is changed in a 

planned manner through an application program or in an ad 

hoc manner through SQL statements or query tools.  

Additionally, it is almost always a good idea to define a 

primary (or unique) key to prohibit duplicate table rows. 

This should be done to ensure entity integrity regardless 

of whether dependent tables are related to the table being 

defined. Entity integrity ensures that each row in a table 

represents a single, real-world entity. 

Of course, there are exceptions to every rule.  

Defining DB2 Referential Constraints 

Referential constraints are defined using the FOREIGN KEY 

clause. A referential constraint consists of three 

components: a constraint name, the columns comprising the 

foreign key and a references clause. The same constraint 

name cannot be specified more than once for the same table. 

If a constraint name is not explicitly coded, DB2 will 

automatically create a unique name for the constraint 

derived from the name of the first column in the foreign 

key. 

For example, consider the relationship between the 

DSN8810.DEPT and DSN8810.EMP tables: 

    CREATE TABLE DSN8810.EMP 

     (EMPNO             CHAR(6)       NOT NULL, 

      FIRSTNME          VARCHAR(12)   NOT NULL, 

      MIDINIT           CHAR(1)       NOT NULL, 

      LASTNAME          VARCHAR(15)   NOT NULL, 

      WORKDEPT          CHAR(3), 

      PHONENO           CHAR(4) CONSTRAINT NUMBER CHECK 

                        (PHONENO >= '0000' AND 

                         PHONENO <= '9999'), 

      HIREDATE          DATE, 

      JOB               CHAR(8), 

      EDLEVEL           SMALLINT, 

      SEX               CHAR(1), 

      BIRTHDATE         DATE, 

      SALARY            DECIMAL(9,2), 

      BONUS             DECIMAL(9,2), 

      COMM              DECIMAL(9,2), 

      PRIMARY KEY (EMPNO) 

      FOREIGN KEY RED (WORKDEPT) 

        REFERENCES DSN8810.DEPT ON DELETE SET NULL 

     ) 

    EDITPROC DSN8EAE1 

    IN DSN8D81A.DSN8S81E; 

    CREATE TABLE DSN8810.DEPT 

     (DEPTNO            CHAR(3)        NOT NULL, 

      DEPTNAME          VARCHAR(36)    NOT NULL, 

      MGRNO             CHAR(6), 

      ADMRDEPT          CHAR(3)        NOT NULL, 

      LOCATION          CHAR(16), 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

      PRIMARY KEY (DEPTNO) 

     ) 

    IN DSN8D81A.DSN8S81D; 

    ALTER TABLE DSN8810.DEPT 

      FOREIGN KEY RDD (ADMRDEPT) 

        REFERENCES DSN8810.DEPT ON DELETE CASCADE; 

    ALTER TABLE DSN8810.DEPT 

      FOREIGN KEY RDE (MGRNO) 

        REFERENCES DSN8810.EMP ON DELETE SET NULL; 

The primary key of EMP is EMPNO; the primary key of DEPT is 

DEPTNO. Several foreign keys exist, but let's examine the 

foreign key that relates EMP to DEPT. The foreign key, 

named RDE, in the DEPT table relates the MGRNO column to a 

specific EMPNO in the EMP table. This referential 

constraint ensures that no MGRNO can exist in the DEPT 

table before the employee exists in the EMP table. The 

MGRNO must take on a value of EMPNO. Additionally, the 

foreign key value in DEPT cannot subsequently be updated to 

a value that is not a valid employee value in EMP, and the 

primary key of EMP cannot be deleted without the 

appropriate check for corresponding values in the DEPT 

foreign key column or columns. 

To ensure that this integrity remains intact, DB2 has a 

series of rules for inserting, deleting, and updating: 

• When inserting a row with a foreign key, DB2 checks 

the values of the foreign key columns against the 

values of the primary key columns in the parent 

table. If no matching primary key columns are found, 

the insert is disallowed.  

• A new primary key row can be inserted as long as the 

primary key is unique for the table. 

• When updating foreign key values, DB2 performs the 

same checks as when it is inserting a row with a 

foreign key.  

• If a primary key value is updated, DB2 does not allow 

there to be any existing foreign keys that refer back 

to the primary key that is changing. All foreign key 

rows first must be either deleted or be set to NULL 

before the value of the primary key can be changed. 

• Deleting a row with a foreign key is always 

permitted.  

• When deleting a row with a primary key, DB2 takes 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

action as indicated in the DDL; it either restricts 

deletion, cascades deletes to foreign key rows, or 

sets all referenced foreign keys to null. 

Each referential constraint must define the action that 

will be taken on foreign key rows when a primary key is 

deleted. There are four options that can be specified: 

• RESTRICT: disallows the deletion of the primary key 

row if any foreign keys relate to the row. 

• CASCADE: allows the deletion of the primary key row 

and also deletes the foreign key rows that relate to 

it. 

• SET NULL: allows the deletion of the primary key row 

and, instead of deleting all related foreign key 

rows, sets the foreign key columns to NULL.  

• NO ACTION: the behavior of NO ACTION is similar to 

RESTRICT. The only difference between RESTRICT and NO 

ACTION is when the referential constraint is 

enforced. RESTRICT enforces the delete rule 

immediately; NO ACTION enforces the delete rule at 

the end of the statement. 

The processing needs of the application dictate which 

delete option should be specified in the table create 

statements. All of these options are valid depending on the 

business rules that apply to the data. 

If efficiency is your primary goal, the RESTRICT option 

usually uses fewer resources because data modification of 

dependent tables is not performed. If data modification is 

necessary, however, allowing DB2 to perform it is usually 

preferable to writing cascade or set null logic in a high-

level language (e.g. COBOL, C, Java, etc.). 

Referential Sets 

A referential set is a group of tables that are connected 

together by referential constraints. It is a wise course of 

action to avoid very large referential sets. Try not to tie 

together all tables in a large system; otherwise, recovery, 

quiesce, and other utility processing will be difficult to 

develop and administer. 

You should follow some general rules when deciding how to 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

limit the scope of DB2-defined referential integrity: 

• Consider removing code and reference tables from your 

referential structures. These tables are usually 

static and easy to control within your programs. 

Adding them to your referential sets can complicate 

administrative tasks. 

• Reduce the size of very large referential sets by 

breaking them apart into smaller structures. 

Referential sets of more than a dozen (or so) tables 

can become unwieldy to manage. Consider breaking up 

referential sets into groups having a dozen or so 

related tables. Doing so makes it easier to keep 

track of the RI defined to DB2 and the rules that are 

in effect. However, it also opens the door to data 

integrity problems caused by updates outside the 

scope of the application programs that enforce the 

integrity. Weigh the performance impact against the 

possible loss of integrity before deciding to bypass 

DB2-enforced RI. 

• Try to control the number of cycles in a referential 

set. A cycle is a referential path that connects a 

table to itself. In the cycle shown in Figure 2, 

Table A is connected to itself. 

  Furthermore, a table cannot be delete-connected to 

itself in a cycle. A table is delete-connected to 

another table if it is a dependent of a table 

specified with a CASCADE delete rule. 

 

Figure 2. A cycle. 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

• Whether RI is checked by DB2 or by an application 

program, overhead is incurred. Efficiency cannot be 

increased simply by moving RI from DB2 to the 

program. Be sure that the application program can 

achieve better performance than DB2 (by taking 

advantage of innate knowledge of the data that DB2 

does not have) before eliminating DB2-enforced RI. 

• If updates to tables are permitted in an uncontrolled 

environment (for example, QMF, SPUFI, or third-party 

table editors like File-Aid for DB2), implement DB2-

enforced RI if data integrity is important. 

Otherwise, you cannot ensure that data is correct 

from a referential integrity standpoint. 

Referential Integrity Guidelines 

The general rule for implementing referential integrity is 

to use DB2's inherent features instead of coding RI with 

application code. DB2 usually has a more efficient means of 

implementing RI than the application. Also, why should a 

programmer code what already is available in the DBMS? 

Exceptions to this rule are the subject of the subsequent 

guidelines in this section.  

Consider Programmatic RI for Efficiency 

DB2 does a referential integrity check for every row 

insertion. For programs conducting multi-row insertions, 

you can improve overall efficiency if your application does 

a single check of a row from the parent table and then 

makes multiple inserts to the child table. Of course, you 

should not allow any data modifications to be made outside 

the control of your programs if DB2 RI is not used. 

Sometimes the flow of an application can dictate whether RI 

is more or less efficient than programmatic RI. If the 

application processing needs are such that the parent table 

is always (or usually) read before even one child is 

inserted, consider implementing programmatic RI instead of 

DB2 RI. DB2 RI would repeat the read process that the 

application must do anyway to satisfy its processing needs.  

Of course, DB2 RI is usually still be preferable in most 

every situation because it enforces data integrity for both 

planned and ad hoc updates, something that programmatic RI 

cannot do. 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

Consider Avoiding RI for Intact, Stable Data  

When tables are built from an existing source system and 

are populated using existing data, and that source system 

is referentially intact, you may want to avoid using DB2 RI 

on those tables. This is especially so if data is 

propagated from the existing system and the new tables will 

not be modified in any other manner. 

However, if the new tables will be modified DB2 RI is the 

best way to ensure the on-going consistency and integrity 

of the data. 

Avoid RI for Read Only Systems 

Do not use DB2 RI if tables are read only. Tables 

containing static data that is loaded and then never (or 

even rarely) modified are not good candidates for RI. The 

data should be analyzed and scrubbed prior to loading so 

that it is referentially intact. Because of the stability 

of the data there is no need for on-going referential 

constraints to be applied to the data. For data that is 

updated, but rarely, using application programs to enforce 

integrity is usually preferable to DB2 RI. 

Sometimes, to scrub the data when loading, you may want to 

use DB2 RI. Specifying ENFORCE CONSTRAINTS for the LOAD 

utility can save a lot of application coding to enforce RI.  

If application code is used to load the tables, base your 

decision for implementing RI with DB2 DDL according to the 

other guidelines in this chapter. 

Beware of Self-Referencing Constraints 

A self-referencing constraint is one in which the parent 

table is also the dependent table. The sample table, 

DSN8810.PROJ contain a self-referencing constraint 

specifying that the MAJPROJ column must be a valid PROJNO. 

Self-referencing constraints must be defined using the 

DELETE CASCADE rule. Exercise caution when deleting rows 

from these types of tables because a single delete could 

cause all of the table data to be completely wiped out! 

Check Constraints 

Check constraints can be used to place specific data value 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

restrictions on the contents of a column through the 

specification of an expression. The expression is 

explicitly defined in the table DDL and is formulated in 

much the same way that SQL WHERE clauses are formulated. 

Any attempt to modify the column data (e.g. during INSERT 

or UPDATE processing) will cause the expression to be 

evaluated. If the modification conforms to the Boolean 

expression, the modification is permitted to continue. If 

not, the statement will fail with a constraint violation. 

Check constraints consist of two components: a constraint 

name and a check condition. The same constraint name cannot 

be specified more than once for the same table. If a 

constraint name is not explicitly coded, DB2 will 

automatically create a unique name for the constraint 

derived from the name of the first column in the check 

condition. 

The check condition defines the actual constraint logic. 

The check condition can be defined using any of the basic 

predicates (>, <, =, <>, <=, >=), as well as BETWEEN, IN, 

LIKE, and NULL. Furthermore, AND and OR can be used to 

string conditions together. However, please note the 

following restrictions: 

• The constraint can only refer to columns in the table 

in which it is created. Other tables cannot be 

referenced in the constraint. 

• Subselects, column functions, host variables, 

parameter markers, special registers and columns 

defined with field procedures cannot be specified in 

a check constraint. 

• The NOT logical operator cannot be used. 

• The first operand must be the name of a column 

contained in the table. The second operand must be 

either another column name or a constant. 

• If the second operand is a constant, it must be 

compatible with the data type of the first operand. 

If the second operand is a column, it must be the 

same data type as the first column specified. 

The EMP table contains the following check constraint: 

    PHONENO  CHAR(4) CONSTRAINT NUMBER CHECK 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

                    (PHONENO >= '0000' AND 

                     PHONENO <= '9999'), 

This constraint defines the valid range of values for the 

PHONENO column. The following are examples of check 

constraints which could be added to the EMP table: 

    CONSTRAINT CHECK_SALARY 

    CHECK (SALARY < 50000.00) 

    CONSTRAINT COMM_VS_SALARY 

    CHECK (SALARY > COMM) 

    CONSTRAINT COMM_BONUS 

    CHECK (COMM > 0 OR BONUS > 0) 

The first check constraint ensures that no employee can 

earn a salary greater than $50,000; the second constraint 

ensures that an employee's salary will always be greater 

than his or her commission; and the third constraint ensure 

that each employee will have either a commission or a bonus 

set up. 

The primary benefit of check constraints is the ability to 

enforce business rules directly in each database without 

requiring additional application logic. Once defined, the 

business rule is physically implemented and cannot be 

bypassed. Check constraints also provide the following 

benefits: 

• Because there is no additional programming required, 

DBAs can implement check constraints without 

involving the application programming staff. However, 

the application programming staff should be consulted 

on check constraints because they may have more 

knowledge of the data. Additionally, the application 

programming staff must be informed when check 

constraints are implemented to avoid duplication of 

effort in the programs being developed. 

• Check constraints provide better data integrity 

because a check constraint is always executed 

whenever the data is modified. Without a check 

constraint critical business rules could be bypassed 

during ad hoc data modification. 

• Check constraints promote consistency. Because they 

are implemented once, in the table DDL, each 

constraint is always enforced. Constraints written in 

application logic, on the other hand, must be 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

executed by each program that modifies the data to 

which the constraint applies. This can cause code 

duplication and inconsistent maintenance resulting in 

inaccurate business rule support. 

• Typically check constraints coded in DDL will 

outperform the corresponding application code. 

Check Constraint Guidelines 

When using check constraints the following tips and 

techniques can be helpful to assure effective constraint 

implementation. 

Beware of Semantics with Check Constraints 

DB2 performs no semantic checking on constraints and 

defaults. It will allow the DBA to define defaults that 

contradict check constraints. Furthermore, DB2 will allow 

the DBA to define check constraints that contradict one 

another. Care must be taken to avoid creating this type of 

problem. The following are examples of contradictory 

constraints: 

    CHECK (EMPNO > 10 AND EMPNO <9) 

In this case, no value is both greater than 10 and less 

than 9, so nothing could ever be inserted. However, DB2 

will allow this constraint to be defined. 

    EMP_TYPE    CHAR(8) DEFAULT 'NEW' 

    CHECK (EMP_TYPE IN ('TEMP', 'FULLTIME', 'CONTRACT')) 

In this case, the default value is not one of the permitted 

EMP_TYPE values according to the defined constraint. No 

defaults would ever be inserted. 

    CHECK (EMPNO > 10) 

    CHECK (EMPNO >= 11) 

In this case, the constraints are redundant. No logical 

harm is done, but both constraints will be checked, thereby 

impacting the performance of applications that modify the 

table in which the constraints exist. 

Other potential semantic problems could occur: 

• the parent table indicates ON DELETE SET NULL but a 

rule is defined on the child table stating CHECK 

(COL1 IS NOT NULL), 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

• When two constraints are defined on the same column 

with contradictory conditions 

• When the constraint requires that the column be NULL, 

but the column is defined as NOT NULL 

Code Constraints at the Table-Level 

Although single constraints (primary keys, unique keys, 

foreign keys, and check constraints) can be specified at 

the column-level, avoid doing so. In terms of 

functionality, there is no difference between an integrity 

constraint defined at the table-level and the same 

constraint defined at the column-level. All constraints can 

be coded at the table-level; only single column constraints 

can be coded at the column-level. By coding all constraints 

at the table-level maintenance will be easier and clarity 

will be improved. 

Code this (table-level): 

CREATE TABLE ORDER_ITEM 

 (ORDERNO           CHAR(3)        NOT NULL, 

  ITEMNO            CHAR(3)        NOT NULL, 

  AMOUNT_ORD        DECIMAL(7,2)   NOT NULL, 

  PRIMARY KEY (ORDERNO, ITEMNO) 

  FOREIGN KEY ORD_ITM (ORDERNO) 

    REFERENCES ORDER ON DELETE CASCADE 

) 

Instead of this (column-level): 

CREATE TABLE ORDER_ITEM 

 (ORDERNO           CHAR(3)        NOT NULL 

    REFERENCES ORDER ON DELETE CASCADE, 

  ITEMNO            CHAR(3)        NOT NULL, 

  AMOUNT_ORD        DECIMAL(7,2)   NOT NULL, 

  PRIMARY KEY (ORDERNO, ITEMNO) 

) 

Favor Check Constraints Over Triggers 

If the same data integrity rule can be achieved using a 

check constraint or a trigger, favor using the check 

constraint. Check constraints are easier to maintain and 

are generally more efficient than triggers. 

Using DB2 Triggers for Data Integrity 

DB2 triggers can be useful for enforcing complex integrity 

rules, maintaining redundant data across multiple tables, 

and ensuring proper data derivation. There are many 

considerations that must be addressed to properly implement 



 

© 2014, Craig S. Mullins – Mullins Consulting, Inc. 

triggers. Let’s just say that you can use triggers to 

implement non-bypassable integrity checks and data 

modification based on inserts, updates, and deletes being 

performed on your application data. 

Using Field, Edit, and Validation Procs for Data Integrity 

Field procedures are programs that transform data on 

insertion and convert the data to its original format on 

subsequent retrieval. You can use a FIELDPROC to transform 

character columns, as long as the columns are 254 bytes or 

less in length. 

No FIELDPROCs are delivered with DB2, so they must be 

developed by the DB2 user. They are ideal for altering the 

sort sequence of values. 

An EDITPROC is functionally equivalent to a FIELDPROC, but 

it acts on an entire row instead of a column. Edit 

procedures are simply programs that transform data on 

insertion and convert the data to its original format on 

subsequent retrieval. Edit procedures are not supplied with 

DB2, so they must be developed by the user of DB2. They are 

ideal for implementing data compression routines. 

A VALIDPROC receives a row and returns a value indicating 

whether LOAD, INSERT, UPDATE, or DELETE processing should 

proceed. A validation procedure is similar to an edit 

procedure but it cannot perform data transformation; it 

simply assesses the validity of the data. 

A typical use for a VALIDPROC is to ensure valid domain 

values. For example, to enforce a Boolean domain, you could 

write a validation procedure to ensure that a certain 

portion of a row contains only T or F. In this way it is 

similar to a check constraint, but a VALIDPROC can apply to 

an entire row, as opposed to a single column. 

Summary 

DB2 offers a plethora of options for ensuring data 

integrity. Be sure to take care to use the appropriate 

options as you design your DB2 databases. Failing to build 

data integrity constraints into your database design almost 

certainly will result in invalid data in your tables. 


