
 Craig S. Mullins
Return to Home Page

May 1995
 System Development Magazine

Producing Quality Software
by Bernard S. Klopfer and Craig S. Mullins

Total quality management. Quality initiatives. Zero defect software. Six sigma
programs. These terms are infiltrating the once isolated bastion of software
development. Obviously, the overwhelming drive toward software quality is upon
us and there is no turning back. But what overriding factors must be understood
before embarking upon a quality program within the realm of information
technology? Why is a quality program important and, even more to the point,
haven't we been striving to produce quality software already?

This article will examine aspects of software quality from both a humanistic
perspective and a technological perspective.

Change Drives Quality Goals
The changing corporate business landscape demands that software developers
pursue excellence in the eyes of broadly defined customers. The concept of
quality applied to software products and end-user applications has traditionally
been defined as reduction or absence of defects. This is no longer a sufficient
definition. Yourdon seems to suggests in "The Decline and Fall of the American
Programmer" that the quality of software is defined by the development process but
most importantly by the people that manage and are managed within the process.

The human element is the most frail component within the spectrum of software
quality. This is so because each individual has his own set of concerns that impact
his ability to manage change. To manage software quality one must first be able to
manage the people that produce that software.

Examination of the people factor in relation to quality reveals three typical
behaviors among software developers and managers that serve as impediments to
the production of quality software.

http://www.craigsmullins.com/

"Wyle E. Coyote - Super Genius"

We can all remember that poor, self-proclaimed genius from the Warner Brothers
cartoons of our youth—Wyle E. Coyote. It seems he had a marvelous contraption
for every occasion. The "Wyle E. Coyote - Super Genius" behavior as applied to
the data processing professional is best reflected by a development programmer
who receives the design specifications for an application and says: "I can develop a
better system with more features, slicker algorithms, and fewer modules—each
with no more than 256 lines of code." This type of excessive creativity often results
in late and over-budget delivery of the system. Remember, Wyle E. Coyote, for all
of his cleverness, never met with success.

When a system does not meet the deadline, resultant perception of the system is
lessened because one of the greatest quality concerns among end users is on-time
delivery. (Typical end user sentiment: What difference does it make if it will work
wonders when I get it, if I can not use it when I need it?) Software development
organizations should not define software quality on behalf of their users. Reigning
in the free-wheeling attitude of the super genius programmer may be difficult, but it
is mandatory if software quality is to be a major imperative at your shop.

"Produce or Perish"

Another typical behavior is a direct result of the precarious times in which we live.
With corporate downsizing, early retirement programs, layoffs, and the like,
employees are apt to believe that if they do not give more than 100% they will be
terminated. Analogous to success in academia, programmers (and managers) that
exhibit this "Produce or Perish" behavior approach application development as a
means of survival. The typical reaction to application requests reflect a focus on
the delivery of the end product, not the process. The classic cartoon depicting a
room of developers and the manager saying "Everybody start coding and I'll go find
out what they want" while humorous, is reflective of this type of behavior. When
challenged with a short delivery time frame the immediate reaction is to ignore the
methodology, if one exists, and start producing the product without regard to
improving quality through improving the process.

But, methodologies exist for a reason. They are there to provide a controlled
approach to application development—one in which steps are delineated that will
result in the optimal production of the required application system. If the
methodology can not be used for your typical application development needs, then:

 either the methodology is flawed and should be replaced with a more
appropriate methodology for your situation, or;

 the decision to subvert the methodology is flawed and should be re-
examined

The bottom line: do not let an over-zealous lurch to quicken the delivery of an
application result in having the process that was initiated to produce the application
properly (the methodology) be ignored. Methodology is important, but as we will
discuss later, it must not be dogmatic and inflexible.

"A Room Without a View"

Sometimes, software developers feel that they operate best in isolation. This
occurs when application development becomes a finite project performed in a
vacuum rather than as part of an ongoing process. Software developers have the
perception of being so busy that they are unable to see their work as part of a
continuous process. Consequently, they do not take the time to apply techniques
or lessons they have learned. When the opportunities for improvement have not
been institutionalized or at least formalized and recorded, the successes that occur
are more often than not based on chance.

It is important that everyone on the software development team act, and be treated
like part of, a team. Failure to do so will greatly impede the resultant quality of the
system. A successful approach to initiating an attitude of teamwork can be
achieved by following the 3C approach— communication, cooperation, and
clarification.

 Communicate effectively at all levels within the group, from the top down
(managers to subordinates) and from the bottom up (subordinates to
managers).

 Stress that it is necessary for each member of the team to cooperate
with one another. No member of any team can afford to say "that is not
in my job description." Of course, cooperation should not be viewed as a
synonym for off loading work to co-workers.

 And finally, clarify all matters which are confusing. Do not blindly
attempt to develop what you do not understand. Once again, clarification
should be implemented in both directions—top down and bottom up.

By embracing the 3C approach, the "island unto myself" attitude can be eliminated
and the possibility for quality software will be heightened.

Lack of Procedural Application

Implied in the behavioral characteristics of a software organization is that the a
formalized development process is severely lacking. Ironically, many good
software engineering principles and methodologies are well-known and well-
established. It is the application of these principles that is lacking because the
techniques and tools are seldom clearly defined and institutionalized.

A study of software engineering practices at major companies conducted by the
Software Engineering Institute (SEI) of Carnegie Mellon University in Pittsburgh,
PA, shows the state of the development process. Refer to Figure 1. According to
this study, a mere 1% of organizations have instituted a formalized software
development process.

Figure 1. The State of the Development Process

The ideal goal for software development organizations should be to reach the point
where the development process is closely managed and measured quantitatively,
with improvement fed back into the process. SEI reports that none of the
companies surveyed had achieved this level of development in their software
engineering.

As startling as these statistics seem, the most surprising aspect of software quality
has been the level of tolerance by the consumer.

Traditionally, it was widely accepted that an IS department or software vendor
would typically over promise and under deliver. The impact of this type of delivery
of products to the consumer was generally negligible because the IS departments
and software vendors were the only game in town.

Satisfy the Customer

Software users today are more sophisticated and demand more in terms of
functionality and ease of use than they did a mere ten years ago. The expansion
of their knowledge has been drawn from a broad base of experience with
commercial PC software products. The current trend toward demanding quality is
a direct by-product of the personal computer revolution. End users have become
less tolerant of spending a lot of time or money to produce applications or receive
software products, both in absolute terms and regarding predictability. One need
only look at the broad acceptance of client/server and departmental computing to
realize that end users have a great desire to participate in and control the software
development process. It is not a far stretch to state that the broken promises and
high costs of days gone by have caused this scenario.

The key to establishing quality is defined by customer satisfaction—whether that
customer is inside or outside the firm, a small account or a major client, a small
department or large department. When faced with intense competition, customer
satisfaction is the only definition of quality that matters.

Consider the following: Given a choice between a Dodge Stealth that breaks down
50% of the time and a Toyota Corolla that is 99% reliable, which car would you
choose? What if the further stipulation were applied that this one car would be
your only car? Some would choose the Stealth because of its style and
sportiness. Others will select the Corolla because of its dependability. The point is
that there is no globally correct answer. To arrive at the correct answer one must
understand the customer and cater to his wishes.

Instituting a Flexible Methodology

[1]

Software development productivity has improved over the past 20 years, but
perceived software quality, customer satisfaction, has not kept pace. The software
development process must be guided by a comprehensive software quality
improvement program.

Mandating what may be termed a "commercial methodology" which incorporates
idealized procedures and methods has proven to be ineffective and viewed as a
nuisance by all participants. The need for procedures and structure is paramount
to the success of any type of software development but is not generally reflected as
part of a commercial product. What is of primary importance for the adoption of a
methodology is an agreement on a basic philosophy that underlies and supports
the motivational factors that drive the product group. Additionally, it is important
that strict adherence to the "written word" be absent from the methodology, a
methodology must be flexible.

The rigorous methodologies that are in place within most organizations are not
successful directly because of the rigor. Shifting the understanding of those who
must adhere to the methodology is crucial. This shift can not be achieved without
accomplishing two objectives:

 Modify your methodology to make it less stringent. Most commercial
methodologies are procedural in nature and require strict adherence to
the letter of its processes. By reducing the "A is followed by B which is
always before C" nature of the methodology, it will be more generally
applicable to your software development tasks.

 Educate the developers on the methodology and the purpose for the
methodology. Without stating a purpose your methodology will usually
fail regardless of how flexible it is. Because the developers will view it as
bureaucracy and a hindrance. With a noble goal, however, a flexible
methodology has a chance to succeed.

Streamline the Perception

One key area of focus for a management group whose mission is to improve
quality, is to first establish an internal definition of quality that adheres to the goal of
customer satisfaction. While this may at first appear to be a simple task, the
perception of what represents quality from the perspective of a development
person probably differs greatly from the perspective of a support individual. This in
turn will vary from the perspective of the end user, the manager, the analyst, etc.

Coming from a developers background, one's perception of quality may be
primarily concerned with improved execution and efficient memory utilization, slick
algorithmic solutions, and code efficiencies. In the eyes of the developer, if a
program or product achieves these types of goals, a quality product is delivered. In
fact, contests exist where developers submit C code that is purposely cryptic but
must still perform a function.

This is where the divergence of support or end-user and development's perception
of quality software occurs. It is not generally thought to be development's
responsibility to provide direct consumer support of a software product, thus the
perception of module/software quality is controlled by the individual developers
ideology. Whereas, the perception of quality from technical support staff or end-
user is quantified by the gross number of problem calls received or made as a
function of their area of responsibility.

Quality as a corporate mission propagates more involvement in the realm of
Quality Assurance ideology and the perception of what quality software is, begins
to change.

Quality reflects reliability. We expect it as consumers of goods and services and
thus we should expect and understand the concept in relation to software. Quality
software, therefore, should reflect reliability. Reliability propagates improved
perception and ultimately customer satisfaction.

The Teamwork Resolution

In order to respond to the demands of the software consumers, be it an end-user or
customer, a definite progressive procedural structure associated with development
and support that reflects a commitment to quality is necessary. An enhanced
philosophical vision that the product itself, and all problems found as a result of
support service functions, belong and become the responsibility of the group as a
whole. This will initiate an environment in which everyone works toward the
common goal of reliability and quick problem resolution. Too often it is evident that
blame is applied to the different factions within a software organization when the
resultant product is of poor quality.

Application of a generalized quality philosophy is easier to write about than to
implement and most "Quality Assurance Methodologies/Programs" do little to
establish an underlying philosophy. What we find when we institute a "Quality
Program" in an organization, or are evaluated by "quality experts", is that the
various tools and procedures recommended and associated with these "Programs"
reflect idealized concepts that are at the very least difficult to implement.
Additionally, the efforts associated with the application of these "Quality Programs"
do not take into account the realities of the re-education, philosophy change, and
expected management buy-in.

The resolution to this often haphazard attempt to force quality through adoption of
idealized concepts requires careful review and evaluation by the people that can
direct and implement the type of underlying philosophy mentioned above.

Adoption of a successful quality program begins with two basic ideas:

 work to define what quality means, and;

 establish a baseline philosophy that centers around a pride in
work/ownership in relation to a product.

Once these goals have been accomplished a means of measurement can be
established to evaluate where the product meets or falls short of the quality
definition. Indeed customer enhancement requests, or support call figures can be
used to measure customer satisfaction. Additionally, the areas of "lesser quality"
will become focal points of the individuals responsible for those areas and the
motivational factors associated with ego will play a key role in improving quality.
Adoption of this philosophy and defining quality are key focus areas for the
initiation and continuation of improved quality.

Corporate Acceptance of the Quality Initiative

Sometimes the process of instituting quality measures is deemed to be a waste of
time. Of what value is a 50% decrease in defects if it comes at the cost of a 50%
decrease in production? Has quality actually increased in this scenario?

These are reasonable concerns. However, they are not necessarily valid. The first
approach to take when confronted with this type of logic is to ask the skeptic to
define “productivity.” Too often, managers base their definition of productivity on
new development only. If a quality program reduces productivity in terms of new
development, it will most assuredly increase software maintenance productivity.
Up-front quality measures always result in reduced post-implementation defects.
But the productivity of maintenance is rarely, if ever, measured. How often have
you heard: “The project was delivered on time and within budget.” But, how often
does this statement get made when the development staff knows that there is an
extensive list of post-implementation “enhancements” yet to be made? A mindset
needs to be established whereby productivity measurements are undertaken for all
software engineering activities. After all, what is new development but radical
maintenance?

However, even after dissecting the definition of productivity, it is still true that any
type of change is accompanied by a learning process which will initially result in
reduced output. The introduction of new quality concepts is no exception to this
rule. If communication and a rigorous training program accompanies the quality
initiative, then the initial decrease in production can be mitigated. The
communication aspect is as important as the training aspect in lessening the
impact of production falloff. To achieve success, the following messages must be
effectively communicated from management to staff:

 The quality initiative is not a reaction to the current quality of the systems
being developed; instead it is part of the continuing learning curve
associated with the relatively new discipline of computer science.
Computer science has existed for less than 40 years. This is in stark
contrast to other sciences, many of which are thousands of years old.
Moving from an application development environment in which quality
assurance is not a part of the development methodology to one in which
it is can be likened to the discovery by astronomers that the Earth orbits
the Sun, and not vice versa.

 The quality initiative is being instituted so the company can function better,
thereby enabling everyone to benefit when the company more effectively
competes in the marketplace. It is not a ploy to reduce staff, enforce
overtime, or simply “shake the trees.” In fact, it may have the opposite
effect. When things are done properly the first time, less overtime will be
required, defects will decrease, thereby causing the desire to shake
things up to decrease.

 Following a quality program will cause developers to feel better about
their job. Just knowing that the project is being rigorously tested and
measured should instill a “pride” of authorship in the developers that will
further enhance overall software quality.

When everyone understands that the quality initiative is not punishment for past
“sins,” but a new and better way of doing things, initial acceptance increases
thereby minimizing the “growing pains” associated with the new methodology.

Of course, every developer who is targeted to participate in the quality initiative
must be trained in the methods of being instituted to assure quality software.
Ideally, this should include all developers. This is where management buy-in to the
quality objective is essential. Without management commitment, training will be
lacking. And who can fault developers for failing to deliver quality products based
upon the approved methodology if they have not been trained?

As the quality program becomes accepted and its components become
understood, production will once again increase to past levels or better, and this
time, not at the cost of quality.

Promoting Quality Without Management Buy-In

The discussion of procedural improvements and the adoption of a structured
methodology implies a supporting environment within a software organization that
allows, or at least condones the associated activities. In practice the vast majority
of software organizations reflect a significant amount of “lip-service” towards the
cause, but little or no action. An underlying truism is associated with this type of
approach to software development; “there is never enough time to do it right, but
always enough time to do it over”. The major commercial software development
companies spend millions of dollars on product support, fix releases, and patches
for their customers. Most corporate data processing shops have 24-hour
application support for abends occurring after normal business hours. While the
actual percentage of total dollars spent on these activities can not all be directly
tied to problems that arise from faulty software, faulty software can “cost”
significantly. This cost is associated with customer and end-user perception of
commercial and corporate applications.

So what can be done? How can quality software be promoted without
management cooperation? As with most solutions to problems, the answer lies
with the individual. The individual, in this case, is the manager that can influence
or direct their teams with relative autonomy. When an individual makes a decision
to travel down a particular path for self-improvement, goals and milestones are set
to accomplish that achievement. The same ideology applies to improvement in
process maturity associated with software development. Listed below are some
suggestions for instituting process improvements that require minimal effort and
reap significant benefits:

1. Implement process improvements as small step, procedural changes that
provide more structure to existing processes.

2. Empower members of the project team with responsibilities associated with
the implementation of the application of “structure.” Get the team involved
in the process.

3. Establish and use inexpensive project management tools to project, and
track tasks and resources associated with all or one particular phase of a
project’s life cycle. This will establish baseline statistics and improve
estimates for future projects.

4. Institute task tracking by linking time reporting to task completion through
the use of individualized tasking sheets or spreadsheet links to project
management tools.

5. Adopt metrics associated with establishing these techniques:

■ Establish baseline measurement of an easily-definable result of
process (i.e.; end user satisfaction qualified and measured by raw
number of problem reports)

■ Institute structured techniques, then measure and analyze results of
the process

■ Share the measurements and results with the team
■ Evaluate applied structure and improve

6. Establish a consensus understanding of quality products and results.
7. Encourage ideas for improvements from the team. There is much to be said

for “pride of authorship.”

These steps result in the application of procedures—a methodology to facilitate the
quality improvement process. In short, the basis for the success of any type of
procedural/process improvement begins with the participants.

Enabling Quality

The most important tools that can be used to promote the continuous improvement
of the process are quality metrics based on an organization's major quality issues.
These measurements provide a benchmark; feedback from end users and direction
for improvement for software development teams.

Specifically, some attributes of quality that usually contribute most to customer
satisfaction are predictability, business impact, appropriateness, reliability and
adaptability.

 Predictability means knowing and controlling the risk factors involved,
such as delivery date, cost and resources needed.

 The business impact dimension of quality relates to whether or not an
application provides a significant benefit to the organization, even if it is
not technically elegant or efficient.

 An appropriate approach will provide a solution that is suitable to the
business and technical problems which end users want addressed.

 Reliability concerns whether or not the system will work for its users
when they need it.

 Adaptability means that the system and support are able to change cost-
effectively to meet the evolving needs of the end users and the users'
customers.

By breaking each of these quality issues down into their key components and then
formulating a measurement system based on those components, managers can
begin to get a handle on the software development process. The key, then, to a
software quality management program lies in whether or not the application
development process can be measured. If a process cannot be measured, it
cannot be understood, controlled or improved.

There is a hidden danger when developing quality metrics for your organization,
though. If the metrics do not truly reflect what is indicative of quality for your
organization, then quality will be ill-defined and difficult to achieve. For example,
consider our discussion of customer satisfaction earlier in this article. If the
satisfaction component is absent from the metrics, then a key part of quality will be
ignored. Remember, quality must be defined by those who use the end product, in
this case the software. Yet, metrics that define true customer satisfaction are
difficult to obtain. Usually, one must be content with metrics (such as for the
concepts listed above) that define portions of the customer satisfaction equation.

Using Technology to Augment Quality

Although much of this article may seem to be railing against technology, this is not
the intent. Technology for technology's sake will never result in quality systems.
However, the appropriate adoption and adaptation of technology can provide
increases in overall software quality.

Consider, for example, the current trend toward object orientation (OO). The
biggest selling point of OO is the increased reusability it offers. Reusability occurs
because OO concentrates on objects instead of mere data elements. An object is
defined in terms of both its state and it behavior. The data and the operations that
can be performed on that data are encapsulated into a central store called an
object.

How does this increase reusability? The underlying components of an application
are hidden inside the objects comprising that system. It is not possible for an
external agent to modify an object's state. The external agent must send a
message to that object, invoking a method internal to that object, thereby altering
the object's data. The object is essentially a plug-and-play piece of software. In
fact, OO development environments are characterized by their class libraries which
contain the reusable objects.

It becomes obvious that incorporating an OO approach into the software
development methodology will be of great benefit. No longer will it be necessary to
reinvent the wheel for each new application system. With OO techniques, objects
in class libraries become building blocks. If enough objects are pre-defined, the
construction of an application becomes a simple matter of inter-connecting the pre-
existing objects to function as desired.

Additionally, maintenance of OO systems is also easier. Because code is
embedded within an object, simply changing the code once in the only place it
exists causes the desired change to be incorporated into every system that uses
that object.

However, one must approach technological advances with caution. Simply
adopting OO approaches for new software development does nothing about
current legacy systems which were written using many different approaches.
Likewise, technology must not be approached as a silver bullet. The history of
software development is characterized by a long list of panaceas that proved to be
anything but the ultimate solution. Remember structured programming, 4th
generation languages, CASE, and JAD? All of these techniques were going to
revolutionize software development and put scores of maintenance programmers
out of work. It didn't happen then, and it isn't likely to happen any time soon.

Synopsis

Instituting quality procedures for software development is impossible without a
thorough understanding of what that process entails. This understanding is not
rooted solely in the technological aspects of software development. It must
encompass the “people” aspect as well. Keep the following key concepts in mind
as you institute a quality initiative at your shop:

 Understand the needs of your customer and meet them without being
biased by the tangential desires of your staff.

 Understand the needs of the software developers and institute policies to
involve them in the quality initiative. Remember the three personality
types and be prepared to deal with them.

 Remember the 3C approach: communicate, cooperate, and clarify.
Without all three, a project will be doomed to failure.

 Inform, instruct, and empower the individual to operate within the quality
program.

 Be firm, yet flexible. A methodology should not be so restrictive as to tie
the hands of the developer. Yet, it must not be so “loose” as to be
ineffective.

 Establish metrics to gauge the effectiveness of the quality program on the
software that is developed.

 Incorporate technological advances into your quality framework without
viewing them as the answer to all of your needs

 Remember, there are no silver bullets. No technological advances will
relieve the software developer of the need to “think,” regardless of what
the salesmen and trade papers tell you.

These ideals are essential whether you work for a software vendor or within the
data processing department of a corporation. Once these hurdles have been
jumped, developing quality systems should be a snap, right?

References

Yourdon, E., The Decline and Fall of the American Programmer, Yourdon Press,

1993.

Watts, Humphries, et al, Software Engineering Institute Capability Maturity Model,

Carnegie Mellon University, Pittsburgh, PA, 1992.

The percentages quoted have no basis in reality and are used for
example only. The authors wish to stress their belief that both cars are
outstanding products and have no desire to denigrate either.

 From System Development, May 1995.

 © 2004, 1995, Craig S. Mullins. All rights reserved.

 Home.

[1]

http://www.craigsmullins.com/

