
 Craig S. Mullins
Return to Home Page

October 1998

Dealing with Fragmentation and
Disorganization

By Craig S. Mullins

Relational technology and SQL make data
modification easy. Just issue an insert, update, or
delete statement with the appropriate WHERE clause,
and the RDBMS takes care of the actual data
navigation and modification. In order to provide this
level of abstraction, the RDBMS handles the physical
placement and movement of data on disk.
Theoretically, this makes everyone happy. The
programmer's interface is simplified and the RDBMS
takes care of the hard part — manipulating the actual
placement of data. However, things are not quite that
simple. The manner in which the RDBMS physically
manages data can cause subsequent performance
problems to arise.

http://www.craigsmullins.com/

Most of us have experienced the situation where an
application slows down after it has been in production
for awhile. But do you know why? Perhaps the number
of transactions issued has increased and maybe the
volume of data has expanded, but it doesn't seem that
these factors should cause such a large performance
degradation. The problems might be due to database
disorganization. Database disorganization occurs
when a database's logical and physical storage
allocations contain many scattered areas of storage
that are too small, not physically contiguous, or too
disorganized to be used productively.

To understand how performance can be impacted by
database disorganization, let's examine an Oracle
table space as modifications are made to data.
Assume that an Oracle table space exists that
consists of three tables across multiple blocks, such
as the table space and tables depicted in Figure 1.

Fragmentation and Row Chaining
The building block for Oracle storage is the data page.

Let's make two data changes to tables in the table
space. First, let's add six rows to the second table. But
no free space exists into which these new rows can be
stored. How can the rows be added? Oracle requires
that another extent is taken into which the new rows
can be placed. For the second change, let's update a
row in the first table to change a VARCHAR2 column;
for example, let's change the LASTNAME column from
"ROGERS" to "FILIPOWSKI". This update results in
an expanded row size because the value for
LASTNAME is longer in the new row: "FILIPOWSKI"
contains 10 characters whereas "ROGERS" only
consists of 6.

The resultant table space might now look like this:

Two potential problems are depicted in Figure 2:
fragmentation and row chaining.

Fragmentation is a condition in which there are many
scattered areas of storage in a database that are too
small to be used productively. It results in wasted
space, which can hinder performance and even cause
database failure.

When updated data does not fit in the space it
currently occupies Oracle will find space for the row
using either row chaining or row migration. With row
chaining Oracle will move a part of the new, larger row

to a location within the table space where free space
exists. With row migrations the full row is placed
elsewhere in the segment. In each case a block-
resident pointer is used to locate either the rest of the
row or the full row. Both row chaining and row
migration will result in multiple I/Os being issued to
read a single row. This will cause performance to
suffer because, obviously multiple I/Os are more
expensive than a single I/O.

Reorganizing Tablespaces
To minimize fragmentation and row chaining, database
objects must be restructured on a regular basis. This
process is also known as reorganization. The primary
benefit is the resulting speed and efficiency of
database functions because the data is organized in a
more optimal fashion on disk. In short, table space
reorganization maximizes availability and reliability for
Oracle databases

Traditionally, DBAs have done this manually by
completely rebuilding databases. But a reorganization
requires a complex series of steps to accomplish. The
diagram in Figure 3 depicts the reorganization
process.

In order to accomplish this reorganization, the
database must be down. The high cost of downtime
creates pressures both to perform and to delay
preventive maintenance — a double-bind familiar to all
DBAs. Third party tools are available that automate
the manual process of defragmentation and
reorganization of tables, indexes, and entire
tablespaces — eliminating the need for time- and
resource-consuming complete database rebuilds. In
addition to automation, these type of tools typically
speed up the reorg process and analyze whether a
reorganization is needed at all.

Synopsis
Reorganizations can be costly in terms of downtime
and computing resources. And it can be difficult to
determine when a reorganization will actually create
performance gains. However, the performance gains
that can be accrued are tremendous when
fragmentation and disorganization exist. The wise
DBA will plan for Oracle table space reorganization if
the above types of disorganization are likely to occur
in their systems.

From Oracle Update (Xephon), October 1998.

© 1999 Mullins Consulting, Inc. All rights reserved.
Home. Phone: 281-494-6153 Fax: 281-491-0637

http://www.craigsmullins.com/

