
IDUG	Solutions	Journal	‐	Fall	2009	 Page	1	

Fall 2009

THE BUFFER POOL

Making Static SQL More Dynamic… and Vice Versa

By Craig S. Mullins

SQL can be either static or dynamic. Static SQL is rigidly formed and usually provides a
known access path to data. On the other hand, dynamic SQL, as you might expect, is
more flexible. This flexibility brings with it important trade offs, the most important of
which is the potential for more accurate access path formulation at the cost of not
knowing what that access path will be before the dynamic SQL runs.

Of course, the differences between static and dynamic SQL are lessening over time.
Over the years, IBM has added various options and features that blur the differences
between the two. Today, there are fewer hard and fast lines between what can be
accomplished with dynamic SQL.

Making Dynamic SQL More Static

As the DB2 ability to optimize SQL has improved, the cost of preparing a dynamic SQL
statement has grown. For some SQL requests, the processing cost of preparing dynamic
SQL statements can be significant. Compounding the potential performance problem,
applications might be forced to pay the cost of preparation more than once for each
dynamic SQL statement. Indeed, the cost of preparation historically has been one of the
greatest impediments to the acceptance of dynamic SQL.

It stands to reason, therefore, that one of the biggest boons to the growing number of
dynamic SQL applications was the introduction of the dynamic statement cache (DSC) in
DB2 V5. With DSC, dynamic SQL, which is called repeatedly, can be prepared and
cached for use by subsequent application processes. You must specify BIND options to
control when to reevaluate access paths after the values of host variables or parameter
markers have been determined.

After an SQL statement has been prepared and is automatically saved in the cache,
subsequent prepare requests for that same SQL statement can avoid the costly
preparation process by using the statement that is in the cache. Statements that are
saved in the cache can be shared among different threads, plans, or packages. When
the prepared statement is found in the dynamic statement cache, it is possible to accrue
significant savings.

IDUG	Solutions	Journal	‐	Fall	2009	 Page	2	

Data manipulation statements can be saved in the cache. Distributed and local SQL
statements are eligible, as are prepared, dynamic statements that use DB2 private
protocol. Prepared statements cannot be shared among data sharing members.
Because each member has its own EDM pool, a cached statement on one member is
not available to an application that runs on another member.

The dynamic SQL statement must be exactly the same as the one which caused the
statement to be cached in order for it to be reused. This means everything must be the
same, including any parameter marker values. Even an extra space in the new SQL
statement will cause the cached statement not to be used.

Types of Dynamic Statement Caching

The intent of dynamic statement caching is to reduce the overhead of dynamic SQL by
avoiding a full prepare, along with the cost of optimizing the SQL, whenever possible.
There are three types of dynamic statement caching:

 Global dynamic statement cache

 Local dynamic statement cache

 Both local and global combined

The global dynamic statement cache is allocated in the dynamic statement cache pool
(EDMSTMTC), which is allocated above the 2 GB bar. Global dynamic statement
caching causes the skeleton copy of a prepared SQL statement to be held in the cache.
Only one skeleton copy of the same statement is held. The skeleton copy can be used
by user threads to create user copies. An LRU algorithm is used for replacement. If an
application issues a PREPARE or an EXECUTE IMMEDIATE (and the statement has
not been executed before in the same commit scope), and the skeleton copy of the
statement is found in the global statement cache, it can be copied from the global cache
into the thread’s storage instead of requiring a full prepare.

A local dynamic statement cache is allocated in the storage of each thread in the
DBM1 address space. The KEEPDYNAMIC bind parameter is used to control usage of
the local dynamic statement cache.

And, of course, you can deploy both local and the global dynamic statement
caching. A prepare can only be avoided when using both caches. As the full prepared
statement is kept across commits, when issuing a new EXECUTE statement (without a
PREPARE after a COMMIT) nothing needs to be prepared. The full executable
statement is still in the thread’s local storage (assuming it was not removed from the
local thread storage because MAXKEEPD was exceeded) and can be executed as such.

There are three types of prepares to consider:

 A full prepare occurs when the skeleton copy of the prepared SQL
statement does not exist in the global dynamic SQL cache (or the global
cache is not active). A full prepare can be caused to occur explicitly by a
PREPARE or an EXECUTE IMMEDIATE statement or implicitly by an
EXECUTE when using KEEPDYNAMIC(YES).

 A short prepare occurs, if the skeleton copy of the prepared SQL
statement in the global dynamic SQL cache can be used.

 An implicit prepare can occur when an application using
KEEPDYNAMIC(YES) issues a new EXECUTE after a COMMIT, but a
prepare cannot be avoided (if this statement is not in the cache or was
removed). In such as case, DB2 will issue the prepare implicitly on behalf

IDUG	Solutions	Journal	‐	Fall	2009	 Page	3	

of the application.

Effects of KEEPDYNAMIC on dynamic SQL

The KEEPDYNAMIC parameter is used to control whether dynamic SQL is kept across
a COMMIT point.

KEEPDYNAMIC(NO) -- DB2 will not keep dynamic SQL statements after
COMMIT points. Dynamic SQL must be prepared after each COMMIT. This is
the simple, standard technique for coding dynamic SQL.

KEEPDYNAMIC(YES) -- DB2 will keep dynamic SQL statements after
COMMIT points. You will not need to code your program to prepare dynamic
SQL statements after each COMMIT. You will need to re-prepare after a
ROLLBACK, though.

With KEEPDYNAMIC(YES) DB2 will keep the dynamic SQL statement until
the application ends, a ROLLBACK is issued, or the application explicitly
issues another PREPARE.

How does the KEEPDYNAMIC parameter interact with the DSC? If the prepared
statement cache is active, KEEPDYNAMIC(YES) will cause DB2 to keep a copy of the
prepared statement in the cache. If the prepared statement cache is not active, DB2
keeps only the SQL statement string past a COMMIT point. DB2 will implicitly prepare
the SQL statement the next time the application executes an OPEN, EXECUTE, or
DESCRIBE operation for that statement.

Generally speaking, specifying KEEPDYNAMIC(YES) will improve performance and
simplify program design. However, keep in mind that the local dynamic statement cache
takes up DBM1 virtual storage below 2GB. This means there is a trade-off between
storage for the cache versus avoiding a PREPARE after issuing a COMMIT. Monitor the
hit ratio on the local cache, as well as the memory required by the cache when making
your decision on local caching.

Effects of REOPT on dynamic SQL

You can gain additional optimization for dynamic SQL using the REOPT parameter of
the BIND command. REOPT specifies whether to have DB2 determine an access path
at run time by using the values of host variables, parameter markers, and special
registers. There are four options from which to choose when specifying REOPT:

REOPT(NONE) -- DB2 will not reoptimize SQL at run time to factor in the
values of host variables, parameter markers, and special registers.
REOPT(NONE) is the default; choose this option when static SQL access
paths are fine.

REOPT(ALWAYS) -- DB2 will reprepare every time the statement is executed.
This means that statements containing host variables, parameter markers, or
special registers will be prepared using actual values, which should improve
the optimization. Subsequent OPEN or EXECUTE requests for the same
statement will reprepare the statement, reoptimize the query plan using the
current set of values for the variables, and execute the newly generated query
plan. Statements in plans or packages that are bound with REOPT(ALWAYS)
cannot be saved in the cache. Additionally, KEEPDYNAMIC(YES) is not
compatible with REOPT(ALWAYS). Consider using REOPT(ALWAYS) for
dynamic SQL with parameter markers and to avoid dynamic statement
caching.

IDUG	Solutions	Journal	‐	Fall	2009	 Page	4	

REOPT(ONCE) -- DB2 will prepare SQL statements only once, using the first
set of host variable values, no matter how many times the statement is
executed by the program. The access path is stored in the dynamic statement
cache and will be used for all subsequent executions of the same SQL
statement. This option was introduced in DB2 V8.

REOPT(AUTO) -- This option directs DB2 to attempt to formulate the optimal
access path in the minimum number of prepares. The basic premise of
REOPT(AUTO) is to re-optimize only when host variable values change
significantly enough to make reoptimization worthwhile. Using this option, DB2
will examine the host variable values and will generate new access paths only
when host variable values change and DB2 has not already generated an
access path for those values. This option was introduced in DB2 9.

After migrating to DB2 9, consider specifying REOPT(AUTO) for SQL statements that at
times can take a relatively long time to execute, depending on the values of parameter
markers. In particular, you should especially consider doing this when parameter
markers refer to non-uniform data that is joined to other tables.

Also, consider re-evaluating programs bound specifying REOPT(ONCE). In some
cases, switching to REOPT(AUTO) from REOPT(ONCE) can produce performance
improvement by reoptimizing when it makes sense, instead of just sticking with a single
access path based on the first values supplied to the parameter markers.

Making Static SQL More Dynamic

Static SQL is bound before it is run. This means that the values for any host variables,
parameter markers, or special registers are not taken into account when the program is
bound. But sometimes you will want DB2 to factor host variable and special register
values into the optimization process. This can be accomplished using the REOPT
parameter.

REOPT(ALWAYS) or REOPT(NONE) apply to static SQL, but REOPT(ONCE) and
REOPT(AUTO) are not valid for static SQL because DB2 does not cache static plans.
The REOPT parameters and to which types of SQL they apply is summarized in the
following table.

REOPT Applicability
REOPT Parameter Dynamic SQL Static SQL

NONE YES YES

ALWAYS YES YES

ONCE YES NO

AUTO YES NO

Consider binding with REOPT(ALWAYS) when the values for your program’s host
variables or special registers are volatile and make a significant difference for access
paths. This means that these statements get compiled at the time of EXECUTE or
OPEN instead of at BIND time. During this compilation, the access plan is chosen,
based on the real values of these variables.

Be sure to factor in the overhead to prepare the access plan for all the SQL in the
program at run time [md] the more complex the SQL the greater the overhead will be. A

IDUG	Solutions	Journal	‐	Fall	2009	 Page	5	

typical bind for a single SQL statement likely will require from 1ms to 100ms to execute
on a z9. The actual time to bind depends on the complexity of the SQL statement, and
some very complex statements may exceed 100ms.

If you have only one or two static SQL statements that would benefit from
reoptimization at runtime consider creating separate package. Put the statements that
can benefit from reoptimization into a package that can be bound REOPT(ALWAYS) or
REOPT(AUTO), and put the remaining statements into a program that can be bound
with REOPT(NONE). Doing so will cause your application to incur the cost of
reoptimization only for those statements that may benefit.

Summary

The days of avoiding dynamic SQL “at all costs” are long behind us. Dynamic SQL is a
mainstay at most organizations today because of its use in web-based applications, ERP
systems, and by many Java applications.

But keep in mind what we’ve learned in this article: dynamic doesn’t have to be
totally dynamic… and static doesn’t have to be totally static. You can take measure to
make dynamic SQL more static, and static SQL more dynamic.

And that is a good thing!

