
 Craig S. Mullins
Return to Home Page

October 1998

The Future of SQL

By Craig S. Mullins

I believe the future of SQL is bright; it is the present of SQL that I
am worried about — but first, some background.

Structured Query Language, better known as SQL (and pronounced
"sequel" or "ess-cue-el"), is the de facto standard query language
for relational database management systems (RDBMSs). SQL is
used not just by DB2, but also by the other leading RDBMS
products such as Oracle and SQL Server. Indeed, every relational
database management system — and many non-relational DBMS
products — support SQL as the method for accessing data.

Why is SQL So Successful?
Why is SQL pervasive within the realm of relational data access?
What benefits are accrued by using SQL rather than another, more
computationally complete language?

There are many reasons for SQL's success. Foremost is that SQL is
a high-level language that provides a greater degree of abstraction
than do procedural languages. Third-generation languages (3GLs),
such as COBOL and C, and even fourth-generation languages

http://www.craigsmullins.com/

(4GLs), require that the programmer navigate data structures.
Program logic must be coded to proceed record-by-record through
the data stores in an order determined by the application
programmer or systems analyst. This information is encoded in the
high-level language and is difficult to change after it has been
programmed.

SQL, on the other hand, is designed to allow the programmer to
specify what data is needed. It does not, indeed it cannot, specify
how to retrieve it. SQL is coded without embedded data-navigational
instructions. The DBMS analyzes the SQL and formulates data-
navigational instructions "behind the scenes." These data-
navigational instructions are called access paths. By forcing the
DBMS to determine the optimal access path to the data, a heavy
burden is removed from the programmer. In addition, the database
can have a better understanding of the state of the data it stores,
and thereby can produce a more efficient and dynamic access path
to the data. The result is that SQL, used properly, provides a quicker
application development and prototyping environment than is
available with corresponding high-level languages.

Another feature of SQL is that it is not merely a query language. The
same language used to query data is used also to define data
structures, control access to the data, and insert, modify, and delete
occurrences of the data. This consolidation of functions into a single
language eases communication between different types of users.
DBAs, systems programmers, application programmers, systems
analysts, systems designers, and end users all speak a common
language — namely, SQL. When all the participants in a project are
speaking the same language, a synergy is created that can reduce
overall system-development time.

Arguably, though, the single most important feature of SQL that has
solidified its success is its capability to retrieve data easily using
English-like syntax. It is much easier to understand a query such as:

 SELECT LASTNAME
 FROM EMP
 WHERE EMPNO = '000010';

than it is to understand pages and pages of COBOL, C, or PL/I
source code, let alone the archaic instructions of Assembler.
Because SQL programming instructions are easier to understand,
they are easier also to learn and maintain — thereby making users
and programmers more productive in a shorter period of time.

SQL is, by nature, a flexible creature. It uses a free-form structure
that gives the user the ability to develop SQL statements in a way
best suited to the given user. Each SQL request is parsed by the
DBMS before execution to check for proper syntax and to optimize
the request. Therefore, SQL statements do not need to start in any
given column and can be strung together on one line or broken
apart on several lines. For example, the following SQL statement:

 SELECT LASTNAME FROM EMP WHERE EMPNO = '000010';

is equivalent to the SQL statement previously depicted. Another
flexible feature of SQL is that a single request can be formulated in
a number of different and functionally equivalent ways. Of course,
this feature can also be very confusing to SQL novices.
Furthermore, the flexibility of SQL is not always desirable because
different but equivalent SQL formulations can result in extremely
differing performance results.

Finally, one of the greatest benefits derived from using SQL is its
ability to operate on sets of data with a single line of code. Multiple
rows can be retrieved, modified, or removed in one fell swoop using
a single SQL statement. This provides the SQL developer with great
power, but this very feature also limits the overall functionality of
SQL. Without the ability to loop or step through multiple rows one at
a time certain tasks are impossible to accomplish using only SQL.
Of course, as more and more functionality is added to SQL, the
number of tasks that can be coded using SQL alone is increasing.

The Origins of SQL
The original version of SQL was called SEQUEL (Structured English
QUery Language) and it was designed by IBM research in San
Jose, California in the early 1970s. The first commercial
implementation of SQL was in 1979 by Oracle Corporation (then
known as Relational Software, Inc.).

In October 1986, ANSI approved a basic version of SQL as the
official standard. Most SQL implementations since have included
many non-standard extensions to the ANSI standard. ANSI updated
the standard in 1989 to include data integrity enhancements and
again, more substantially in 1992 to a new standard commonly
known as SQL2. Further enhancements have been made to the
SQL standard to include support for a Call Level Interface (CLI) and
stored procedures.

The next iteration of the SQL standard, commonly known as SQL3,
is in the works and will extend SQL to provide object/relational
capabilities. There is no clear consensus as to when SQL3 will be
fully agreed upon and delivered.

The Threat of the Present

If you believe some industry pundits reliance on SQL for relational
data access is on the wane. New Internet technologies such as
Java and XML are being touted as the "next big thing" for accessing
databases.

The promise of these new technologies is intriguing. Take XML for
example. If you believe everything you read, then XML is going to
solve all of our interoperability problems, completely replace SQL,
and possibly even deliver peace on Earth. Okay, that last one is an
exaggeration, but you get the point. In actuality, XML stands for
eXtensible Markup Language. The need for extensibility, structure,
and validation is the basis for the evolution of the web towards XML.
XML, like HTML, is based upon SGML (Standard Generalized
Markup Language) which allows documents to be self-describing,
through the specification of tag sets and the structural relationships
between the tags. HTML is a small, specifically-defined set of tags
and attributes, enabling users to bypass the self-describing aspect
for a document. XML, on the other hand, retains the key SGML
advantage of self-description, while avoiding the complexity of full-
blown SGML.

But XML does not do what SQL does and hence, cannot replace it.
And the same can be said for Java. Willie and I discussed Java in
this column in the last issue of IDUG Solutions Journal, so I will not
rehash the subject here again. Suffice it to say, Java cannot and will
not replace SQL either. The API to relational databases remains
SQL and any other data access or presentation technology
necessarily must communicate with relational data by means of
SQL. XML and Java can provide benefit to organizations by
extending the capability of the Internet to include data access and
modification through SQL, and this is goodness. But don't be fooled
into believing they (or anything else) will be able to completely

replace SQL any time soon.

Even so, object-oriented programmers tend to resist using SQL. The
set-based nature of SQL is not simple to master and is anathema to
the OO techniques practiced by Java developers. All too often the
manner in which data is accessed is not planned out and designed
in a thoughtful manner. In fact, sometimes it is not thought of at all
until performance suffers.

Object orientation is indeed a political nightmare for those schooled
in relational tenets. Proponents of OO are almost always the enemy
of those who practice sound data management policy. All too often
organizations are experiencing political struggles between the OO
programming team and the data resource management group. The
OO crowd espouses programs and components as the center of the
universe; the data crowd adheres to the tenets of normalized,
shared data with the RDBMS as the center of the universe.

Thanks to all of the hype, the OO crowd tends to win many of these
battles, but the war will eventually be won by data-centered thinking.
The notion of data normalization and shared databases to reduce
redundancy provides too many benefits in the long run to be
abandoned. As the focus blurs away from data management and
sound relational practices, data quality will deteriorate and
productivity will decline. And then a new era of SQL vitality will arise.

The Glow of the Future
SQL is still a growing and very adaptable language. Depending on
the version and flavor of DB2 you are using, new functionality such
as CASE statements, outer joins, and nested table expressions
have increased the number of tasks we can perform using SQL
alone. But these features are not the end of how SQL will adapt to

change.

Recursive SQL, available in DB2 Universal Database Server in V5,
and soon to be ported to other members of the DB2 family, further
expands the functionality of SQL. Recursion enables a table
expression to refer to itself. With recursive SQL even more tasks
become possible using only SQL without embedding it in a 3GL or
4GL. To help you understand recursion better, think of the following
metaphor. Consider what happens when a camera films someone
watching himself on live TV. You can see the person multiple times
in the picture because it is recursive. It is possible to traverse
hierarchies such as a bill of materials or an organization chart using
a single recursive query.

Traditionally, DBMS products stored data and nothing else. But all of
the major RDBMS products of today support (or are moving to
support) procedural logic in the form of triggers, functions, and
stored procedures, sometimes referred to as Server Code Objects
(or SCOs for short). The ability to store procedural logic in the
database is increasingly common because it enhances performance
of client/server applications, eases security implementation,
promotes reusability, and makes databases active.

DB2 for OS/390 V6 will add features such as triggers, user-defined
functions, and more built-in functions that will enable active
databases with increased data integrity. An active database can
take actions automatically and implicitly by virtue of an event
occurring. For example, a database trigger can be specified on a
table that automatically calculates derived data whenever any value
it is derived from changes. The trigger can even INSERT the derived
data into another column automatically, thereby preserving data
quality and integrity. And all of this happens just because a single

SQL statement was issued to change data. So even more tasks will
be able to be accomplished using only SQL.

DB2 Universal Database, and recently DB2 for OS/390, provide
SQL CLI support. The SQL CLI (Call-Level Interface) is an
alternative binding style for executing SQL statements. Instead of
embedding SQL in an application program, you use routines that
allocate and deallocate resources, control connections to the
database, execute SQL statements using similar mechanisms to
dynamic SQL, obtain diagnostic information, control transaction
termination, and obtain information about the implementation.
Basically, the CLI issues SQL statements against the database
using procedure calls instead of via direct embedded SQL
statements. A SQL CLI is useful for enabling SQL access to more
languages and programmers than before. This is goodness.

The Long Term Future is Even Brighter
And the long-term future of SQL is even brighter. More and more
features will be available using just SQL. Large object support
(available in UDB today, in OS/390 in V6) enables SQL statements
to access very large text and multimedia objects. As these features
become available more and more applications will use them in novel
ways to gain a competitive advantage.

Additionally, SQL will eventually be extended to incorporate new and
exciting technology such as fuzzy logic and temporal data. These
features are further in the future, but promise to provide exciting
new capabilities.

The addition of temporal qualities to relational databases, and thus
SQL, will make your databases time-sensitive. Temporal extensions
will enable you to query the database not just on its current state,

but on its past state as well. For example, temporal capabilities
could help you to answer questions when data changes over time,
such as:

The actual price of a particular product on a given date
 The commission rate assigned to a sales rep on a given date

 Monthly revenue changes
 The status of a project at a particular moment in the past

 Inventory at any given point in time
 Sales on the day before Christmas over the past ten years

And these are just a few of the examples. I'm sure you can think of
more using your own systems and needs. There are many possible
ways to extend SQL to support temporal databases. Here is one
possible example of a simple temporal SQL query:

 SELECT PROD_ID
 FROM PROD
 WHERE PRICE > 100,00
 FROMDATE '1997-03-01'
 TODATE '1998-09-30';

Of course, you will have to assign a time granularity to the PROD
table before such a query could be issued. And there are many
different time granularities that could be assigned: YEAR, MONTH,
WEEK, HOUR, etc. You get the idea!

 Fuzzy logic is also a discipline that will eventually find its way into
relational database technology and SQL. Fuzzy logic is a discipline
that relies on Eastern philosophy more than Western. Its simple
theory is that everything is true, just to different degrees. In the
Western world we are used to absolutes: YES and NO; TRUE and
FALSE; ON and OFF; 1 and 0. Eastern philosophy is less rigid,

teaching that all things are shades of gray, instead of black or white.

Why is fuzzy logic useful? Consider the following:

When eating an apple, when does it stop being an apple and
become an apple core instead?

 If you wish to control room temperature to be 70 degrees F, do
you really want to tell the air conditioner to shut off immediately
when the temperature is 60.9 and turn back on at 70.1?

 When querying your data looking for the products earning
highest amount of revenue, what is the cut off point inclusion? If
it is $6 million, do you really want to ignore the products that
earned $5.99 million?

Fuzzy logic helps to alleviate these problems by imposing degrees
of truth on everything. A bank might want to identify bank accounts
that are a drag on earnings. Someone who makes many
transactions but maintains a low balance is probably not earning the
bank a lot of revenue, so it might wish to levy fees on these
accounts. A fuzzy SQL query to help identify these accounts might
look something like this:

 SELECT NAME, ACCT_NO
 FROM ACCT
 WHERE BALANCE IS LOW
 AND ACTIVITY IS HIGH;

Now wouldn't that be simpler than trying to set an arbitrary cut off for
what constitutes a low BALANCE or high ACTIVITY? Of course, you
will need to set up the fuzzy vocabulary up front. This usually
involves defining terms such as LOW and HIGH, FEW and MANY,
or YOUNG and OLD. Additional second order terms can be defined

to augment the first order fuzzy terms, such as USUALLY, ALWAYS,
and VERY. So, we could augment our query above to add second
order terms such as:

 SELECT NAME, ACCT_NO
 FROM ACCT
 WHERE BALANCE IS USUALLY LOW
 AND ACTIVITY IS VERY HIGH;

In general, fuzzy logic can help to improve the results of SQL and
will enable us to do even more with a single SQL statement.

Synopsis
The future of SQL is indeed bright, but challenges lurk around every
corner. What should you do as OO, Java, and XML encroach on the
world of SQL and threaten data integrity? Well, use common sense.
Understand any new technology before implementing it at your
company. Know what it can and can't do by practicing with the
technology — not by listening to the hype. Be sure to maintain and
develop expertise in SQL in your organization. Be sure to know how
the new technologies interact with SQL (JDBC, JSQL) and
implement them appropriately. And keep on promoting SQL and
data resource management. I mean, deep down inside we know
these must be the basis for our IT infrastructure or that infrastructure
will crumble around us.

From IDUG Solutions Journal, October 1998.

© 1999 Mullins Consulting, Inc. All rights reserved.
Home. Phone: 281-494-6153 Fax: 281-491-0637

http://www.craigsmullins.com/

