
 Craig S. Mullins
Return to Home Page

Vol. 11, No. 1 (May 2004)

The Buffer Pool

Recursion in DB2 V8, V8, V8…
 By Craig S. Mullins

One of the most intriguing new features of DB2 for z/OS
V8 is the ability to code recursive SQL. A recursive query
is one that refers to itself. I think the best way to quickly
grasp the concept of recursion is to think about a mirror
that is reflected into another mirror and when you look
into it you get never-ending reflections of yourself. This
is recursion in action.

Recursion is implemented in DB2 using common table
expressions (CTEs), which also are new to DB2 V8. A CTE

http://www.craigsmullins.com/

can be thought of as a named temporary table within a
SQL statement that is retained for the duration of that
statement. There can be many CTEs in a single SQL
statement; however, each must have a unique name. A
CTE is defined at the beginning of a query using the
WITH clause. After it is defined, the CTE can be
referenced by name within the rest of the SQL
statement.

Now before we dive into recursion, let’s first look at some data that would benefit from
being read recursively. Figure 1 shows a hierarchic organization chart.

Figure 1. A sample hierarchy.

A DB2 table holding this data could be set up as follows:

 CREATE TABLE ORG_CHART

 (MGR_ID SMALLINT,
 EMP_ID SMALLINT,
 EMP_NAME CHAR(20))
 ;

Of course, this is a simple implementation and many
more columns would likely be needed for a production
hierarchy. But the simplicity of this table will suit our
purposes for learning recursion. To make the data in
this table match our diagram, we would load the table
as follows:

MGR_ID EMP_ID EMP_NAME

 -1 1 BIG BOSS
 1 2 LACKEY
 1 3 LIL BOSS
 1 4 BOOTLICKER
 2 5 GRUNT
 3 6 TEAM LEAD
 6 7 LOW MAN

 6 8 SCRUB

The MGR_ID for the top-most node is set to some value
indicating that there is no parent for this row; in this
case –1 is used. Now that we have loaded the data we
can code a query to walk the hierarchy using recursive
SQL. Suppose we need to report on the entire
organizational structure under LIL BOSS. The following
recursive SQL using a CTE will do the trick (note that we
have named our CTE “EXPL”):

 WITH EXPL (MGR_ID, EMP_ID, EMP_NAME) AS
 (
 SELECT ROOT.MGR_ID, ROOT.EMP_ID,
ROOT.EMP_NAME
 FROM ORG_CHART ROOT
 WHERE ROOT.EMP_ID = 3

 UNION ALL

 SELECT CHILD.MGR_ID, CHILD.EMP_ID,
CHILD.EMP_NAME
 FROM EXPL PARENT, ORG_CHART CHILD
 WHERE PARENT.EMP_ID = CHILD.MGR_ID
)

 SELECT DISTINCT MGR_ID, EMP_ID, EMP_NAME
 FROM EXPL
 ORDER BY MGR_ID, EMP_ID;

The results of running this query would be:

MGR_ID EMP_ID EMP_NAME
 1 3 LIL BOSS
 3 6 TEAM LEAD
 6 7 LOW MAN
 6 8 SCRUB

Let’s break this somewhat complex query down into its
constituent pieces to help understand what is going on.
First of all, a recursive query is implemented using the
WITH clause (using a CTE). The CTE is named EXPL. The
first SELECT primes the pump to initialize the “root” of
the search. In our case, to start with EMP_ID 3, that is LIL
BOSS.

Now “here comes the tricky part.” The next SELECT is an
inner join combining the CTE with the table upon which

the CTE is based. This is where the recursion comes in. A
portion of the CTE definition refers to itself. Finally, we
SELECT from the CTE. Similar queries can be written to
completely explode the hierarchy to retrieve all the
descendants of any given node, if such data is so
desired.

Recursive SQL can be very elegant and efficient.
However, because of the difficulty developers can have
understanding recursion, it is sometimes thought of as
“too inefficient to use frequently.” But, if you have a
business need to walk or explode hierarchies in DB2,
recursive SQL will likely be your most efficient option.
What else are you going to do? You can create pre-
exploded tables, but this requires denormalization and
a lot of pre-processing which will not be very efficient
either. Or you might write your own code to walk a
hierarchy. This, too, is fraught with potential problems.
You would probably retrieve more data than you need,
causing inefficient I/O. And how would you assure that
your code is more efficient than DB2?

If every row processed by the query is required in the
answer set (“find all employees who work for LIL BOSS”),
then recursion will most likely be quite efficient. If only a

few of the rows processed by the query are actually
needed (“find all flights from Houston to Pittsburgh, but
show only the three fastest”) then a recursive query can
be quite costly. The bottom line is that you should
consider recursive SQL when business requirements call
for it. But be sure that suitable indexes are available and
always examine your access paths.

From IDUG Solutions Journal, April 2004.

© 2004 Craig S. Mullins, All rights reserved.
Home.

http://www.idug.org/
http://www.craigsmullins.com/

