
 Craig S. Mullins
Return to Home Page

Vol. 12, No. 1 (April 2005)

The Buffer Pool

On VSAM and DB2
 By Craig S. Mullins

Lately I’ve been getting a lot of questions from people
looking to convert their VSAM data to DB2. So I thought
I’d put together my thoughts on the topic for my IDUG
Solutions Journal column so I can share them with
everybody.

First of all, let’s discuss the basics. VSAM and DB2 are
very different technologies. VSAM is a file access
method and DB2 is a database management system
(DBMS).

http://www.craigsmullins.com/

VSAM, or Virtual Sequential Access Method, is a
methodology for the indexed or sequential processing
of records on direct access devices. There are three
ways to access data in a VSAM file: random (or direct),
sequential, and skip-sequential. Random access is
enabled using a search argument to directly access data
and sequential access is accomplished by processing
one record at a time. Skip-sequential access is a
combination of random and sequential: the first record
is obtained randomly and from there on each
subsequent record is processing one after the other.
With VSAM though, direct access to data can only be
provided using a pre-defined key: there must be a
primary key (there can be multiple, alternate keys).

Of course, this simple introduction to VSAM just skims
the basics. There is much more that you will need to
know if you are using VSAM or considering whether to
convert from VSAM to DB2. Sometimes the only
motivating factor driving a conversion effort is that
VSAM is old technology and DB2 is newer. That is not a
very useful criterion for converting. Of course, if you are
having trouble trying to hire folks who are
knowledgeable about the older technology, then the

reasoning makes a little more sense. But I have never
heard that line of reasoning with regard to VSAM; it is
more common with regard to converting from IMS to
DB2.

A better motivating factor for converting from VSAM to
DB2 is to take advantage of the facilities and capabilities
of a DBMS. Let’s examine the core benefits of using a
DBMS.

The Advantages of a DBMS

Being a DBMS comes with advantages (and overhead). A
DBMS is a software package designed to create, store,
and manage databases. The DBMS software enables
end users or application programmers to share data. It
provides a systematic method of creating, updating,
retrieving and storing information in a database. DBMSs
also are responsible for data integrity, data access
control, and automated rollback, restart and recovery.

The main advantage of using a DBMS is to impose a
logical, structured organization on the data. A DBMS
delivers economy of scale for processing large amounts
of data because it is optimized for such operations.

Using a DBMS provides a central store of data that can
be accessed by multiple users, from multiple locations.
Data can be shared among multiple applications,
instead of new iterations of the same data being
propagated and stored in new files for every new
application. Central storage and management of data
within the DBMS provides:

· Data abstraction and independence.

· Data security.

· A locking mechanism for concurrent access with ACID properties
(ACID is an acronym for atomicity, consistency, isolation, and
durability).

· An efficient handler to balance the needs of multiple applications
using the same data.

· The ability to swiftly recover from crashes and errors.

· Robust data integrity capabilities.

· Simple access using a standard API.

· Uniform administration procedures for data.

Furthermore, a DBMS offers the ability to provide many
views of a single database schema. A view defines what
data the user sees and how that user sees the data. The

DBMS provides a level of abstraction between the
conceptual schema that defines the logical structure of
the database and the physical schema that describes
the files, indexes, and other physical mechanisms used
by the database. Users function at the conceptual level
— for example, by querying columns within rows of
tables — instead of having to figure out how to access
data using the many different types of physical
structures used by the DBMS to store the data.

When a DBMS is used, systems can be modified much
more easily when business requirements change. New
categories of data can be added to the database
without disruption to the existing system. With DB2, for
example, adding a new “field” is as simple as issuing an
ALTER statement to add the new column to the table.
Performing a similar task in VSAM is much more difficult
— especially if the file does not have any unused “filler”
area at the end.

A DBMS provides a layer of independence between the
data and the applications that use the data. In other
words, applications are insulated from how data is
structured and stored. The DBMS provides two types of
data independence:

· Logical data independence; that is, protection from changes to the
logical structure of data.

· Physical data independence, meaning protection from changes to the
physical structure of data.

As long as programs use the API (application
programming interface) to the database as provided by
the DBMS, developers can avoid changing programs
because of database changes. With DB2, this API is SQL
and there is no other approved way of accessing DB2
data.

Furthermore, ad hoc access to your data is very, very
difficult — perhaps nigh on impossible – when using
VSAM alone. Ad hoc access to data in a DBMS is simple,
just code up some SQL. This offers better data
availability and access to your end users.

Of course, a DBMS must perform additional work to
provide these advantages, thereby bringing with it the
overhead. A DBMS will use more memory and more
CPU than a simple file storage system. But remember,
you are accomplishing a lot more with the DBMS.

Converting from VSAM to DB2?

The gist of most of the questions I’ve been hearing lately
are why and/or how to convert from VSAM to DB2. So
let’s try to get our arms around the situation. Usually, a
company has an existing, VSAM legacy system, written
in COBOL and accessed in batch (and perhaps online in
CICS). Then, someone at that company gets the bright
idea to convert that system to use DB2. Which, in turn,
causes people to ask: “Should we do this?” and “How
can we do this?”

Tackling the “should” question first, the answer is “it
depends” (of course). Most people asking these
questions already use DB2 for other applications and
employ trained DB2 professionals (programmers, DBAs,
system programmers, etc.). If you do not already use
DB2, then re-read the beginning portion of this article
because that explains the primary benefits of using a
DBMS like DB2, instead of a file system like VSAM.

But the “should” question goes deeper than just DBMS
versus file system. The VSAM application programs are
already written and (probably) running well. Any
conversion you attempt will disrupt the apple cart, at
least somewhat. If your existing application is working
well and there are not a lot of outstanding requests for

changes or many requests for ad hoc reports, then you
should probably leave well enough alone – meaning, do
not convert the VSAM data or applications. The trouble
of converting is unlikely to produce sufficient benefits to
make the conversion worthwhile.

There are several other issues with VSAM that might be
driving the desire to convert to DB2. It can be difficult to
share VSAM data across different processes while
ensuring data integrity. If data growth is an issue, there
are architectural limits that impose a maximum size on
a VSAM file, whereas DB2 imposes higher limits. And
change management is more difficult with VSAM,
especially as DB2 online schema evolution continues to
evolve.

All right, so what if we still want to convert because of
the above reasons, or some other compelling reason
(management dictate, data integration requirements,
etc.)? That is when we get to the “how” question. And
that is the stickier of the two questions.

Most converters, at this point, are looking for
techniques or products that will allow them to convert
the data and leave the applications untouched. If

pursued without knowledge of the application, this
strategy can produce very bad results. Because DB2
uses SQL it accesses data a set-at-a-time. VSAM, on the
other hand, accesses data a record-at-a-time. So there is
an impedance mismatch between the application that is
already written, and the new data storage mechanism –
DB2. If you simply convert VSAM calls to DB2 SQL
statements then you most likely will not take advantage
of the power of SQL. You will not be joining data. You
will not be formulating predicates properly because
VSAM only accesses data by keys. You may be reading
data that your programs do not require. This will result
in diminished application performance – and nobody
wants that, do they?

Indeed, the biggest problem that VSAM professionals
encounter when moving to DB2 is treating the DB2 data
like it is in a flat file. A mentality shift is required to think
in sets instead of files, rows instead of records, and
putting as much work as possible into the SQL
predicates to allow DB2 to work as efficiently as
possible.

Conversely, sometimes the VSAM proponents denigrate
DB2 by calling it a pig. Yes, there is additional overhead

when using DB2 instead of VSAM. DB2 does more than
VSAM, so the overhead is warranted. Does that mean
that VSAM outperforms DB2? Absolutely not!

If you understand DB2 and use it appropriately, its
performance will be excellent. If you use DB2 like VSAM,
its performance will stink. Think about it this way:
compare a DB2 SELECT of four columns in a clustering
index against the application code needed to access the
same data by reading the entire VSAM file. In such a
scenario, properly coded DB2 will undoubtedly
outperform properly coded VSAM requests.

Flexibility is another important concern. DB2 is flexible
and VSAM is not. If you do not believe that, then think
about what it would take to add an index to existing
data. With DB2, you add the index, rebind the program,
and DB2 will take advantage of it without having to
change any application code. With VSAM you would
have to explicitly code requests to use the new index –
not very flexible, is it?

And the robustness of the environment is another
consideration. Running concurrent updates against the
same VSAM file in batch and online is not nearly as

efficient as doing the same with DB2. DBMS locking and
ACID properties make such situations a clear-cut
advantage for DB2.

DB2 Uses VSAM

Finally, with all of the above said and done, remember
that DB2 needs VSAM. DB2 uses underlying VSAM linear
data sets for its table spaces. However, keep in mind
that all control over that data is done by DB2. Reading,
writing, buffering, and so on, all are controlled by DB2,
and not by VSAM components or commands. (Of
course, some DBAs still use IDCAMS to define the
underlying data sets, but most DBAs these days use
storage groups thereby enabling DB2 to define the
VSAM data sets itself.)

Summary

Hopefully this short synopsis of VSAM and DB2, along
with the advantages of the database approach over the
flat file approach, has reinforced concepts and
knowledge that you already had. If you are looking for
additional information on VSAM, consider reading the

IBM redbook titled VSAM Demystified (SG24-6105). You
might also want to look into IBM’s VSAM Transparency
options if you are tasked with converting VSAM
applications to DB2. And good luck with your VSAM to
DB2 conversions…

From IDUG Solutions Journal, April 2005.

© 2004 Craig S. Mullins, All rights reserved.
Home.

http://www.idug.org/
http://www.craigsmullins.com/

