
 Craig S. Mullins
Return to Home Page

Vol. 10, No. 3 (November 2003)

The Buffer Pool

Know Your Isolation Levels
By Craig S. Mullins

Did you know that DB2 provides a way to change the
way that a program or SQL statement acquires locks?
That way is known as the isolation level and it can be set
to specify the locking behavior for a transaction or
statement. Standard SQL defines four isolation levels
that can be set using the SET TRANSACTION ISOLATION
LEVEL statement:

· Serializable

http://www.craigsmullins.com/

· Repeatable read

· Read committed

· Read uncommitted

The isolation level determines the mode of page or row
locking implemented by the program as it runs.

DB2 supports a variation of the standard isolation
levels. DB2 implements page and row locking at the
program execution level, which means that all page or
row locks are acquired as needed during the program
run. Page and row locks are released as the program
run depending on the isolation level.

In DB2 you can specify the following four isolation
levels: cursor stability (CS), repeatable read (RR), read
stability (RS), and uncommitted read (UR).

Using the ISOLATION parameter of the BIND command
you can set the isolation level of a package or plan. You
also can use the WITH parameter on a SELECT
statement to set the isolation level of a single SQL
statement.

Cursor stability is the DB2 implementation of the SQL
standard read committed isolation level. CS is perhaps
the most common DB2 isolation level in use in
production applications because it offers a good
tradeoff between data integrity and concurrency. When
CS is specified the transaction will never read data that
is not yet committed; only committed data can be read.

A higher level of integrity is provided with repeatable
read. Under an RR isolation level all page locks are held
until they are released by a COMMIT (or ROLLBACK),
whereas with CS read-only page locks are released as
soon as another page is accessed. Repeatable read is
the default isolation level if none is specified at BIND
time.

An RR page locking strategy is useful when an
application program requires consistency in rows that
may be accessed twice in one execution of the program,
or when an application program requires data integrity
that cannot be achieved with CS.

For example of a good reason to use RR page locking,
consider a reporting program that scans a table to
produce a detail report, and then scans it again to

produce a summarized managerial report. If the
program is bound using CS, the results of the first report
might not match the results of the second.

Suppose that you are reporting the estimated
completion dates for project activities. The first report
lists every project and the estimated completion date.
The second, managerial report lists only the projects
with a completion date greater than one year.

The first report indicates that two activities are
scheduled for more than one year. After the first report
but before the second, however, an update occurs. A
manager realizes that she underestimated the
resources required for a project. She invokes a
transaction to change the estimated completion date of
one of her project's activities from 8 months to 14
months. The second report is produced by the same
program, but reports 3 activities.

If the program used an RR isolation level rather than CS,
an UPDATE that occurs after the production of the first
report but before the second would not have been
allowed. The program would have maintained the locks
it held from the generation of the first report and the

updater would be locked out until the locks were
released.

How about another example? Consider a program that
is looking for pertinent information about employees in
the information center and software support
departments who make more than $30,000 in base
salary. In the DB2 sample tables department 'C01' is the
information center and department 'E21' is software
support.

The program opens a cursor based on the following
SELECT statement:

 SELECT EMPNO, FIRSTNME, LASTNAME,
 WORKDEPT, SALARY
 FROM DSN8710.EMP
 WHERE WORKDEPT IN ('C01', 'E21')
 AND SALARY > 30000;

The program then begins to FETCH employee rows.
Assume further, as would probably be the case, that the
statement uses the XEMP2 index on the WORKDEPT
column. An update program that implements employee
modifications is running concurrently. The program
handles transfers by moving employees from one

department to another, and implements raises by
increasing the salary.

Assume that Sally Kwan, one of your employees, has
just been transferred from the information center to
software support. Assume further that another
information center employee, Heather Nicholls,
received a 10 percent raise. The update program
running concurrently with the report program
implements both of these modifications.

If the report program were bound with an isolation level
of CS, the second program could move Sally from 'C01'
to 'E21' after she was reported to be in department
'C01' but before the entire report was finished. Thus,
she could be reported twice: once as an information
center employee and again as a software support
employee. Although this circumstance is rare, it can
happen with programs that use cursor stability. If the
program were bound instead with RR, this problem
could not happen. The update program probably would
not be allowed to run concurrently with a reporting
program, however, because it would experience too
many locking problems.

Now consider Heather's dilemma. The raise increases
her salary 10 percent, from $28,420 to $31,262. Her
salary now fits the parameters specified in the WHERE
condition of the SQL statement. Will she be reported? It
depends on whether the update occurs before or after
the row has been retrieved by the index scan, which is
clearly a tenuous situation. Once again, RR avoids this
problem.

You might be wondering, "If CS has the potential to
cause so many problems, why is it used so ubiquitously?
Why not trade the performance and concurrency gain of
CS for the integrity of RR?"

The answer is simple: the types of problems outlined
are rare. The expense of using RR, however, can be
substantial in terms of concurrency. So the tradeoff
between the concurrency expense of RR and the
efficiency of CS usually is not a sound one.

The third isolation level provided by DB2 is read
stability (RS). Read stability is similar in functionality to
the RR isolation level, but a little less. A retrieved row or
page is locked until the end of the unit of work; no other
program can modify the data until the unit of work is

complete, but other processes can insert values that
might be read by your application if it accesses the row
a second time.

Consider using read stability over repeatable read only
when your program can handle retrieving a different set
of rows each time a cursor or singleton SELECT is
issued. If using read stability, be sure your application is
not dependent on having the same number of rows
returned each time.

Finally, we come to the last, and most maligned isolation
level, uncommitted read (UR). The UR isolation level
provides read-through locks, also know as dirty read or
read uncommitted. Using UR can help to overcome
concurrency problems. When you're using an
uncommitted read, an application program can read
data that has been changed but is not yet committed.

UR can be a performance booster, too, because
application programs bound using the UR isolation level
will read data without taking locks. This way, the
application program can read data contained in the
table as it is being manipulated. Consider the following
sequence of events:

1. To change a specific value, at 9:00 a.m. a transaction
containing the following SQL is executed:

UPDATE EMP
 SET FIRSTNME = "MICHELLE"
WHERE EMPNO = 10020;

The transaction is a long-running one and continues to
execute without issuing a COMMIT.

2. At 9:01 a.m., a second transaction attempts to
SELECT the data that was changed, but not committed.

If the UR isolation level were used for the second
transaction, it would read the changed data even
though it had yet to be committed. Obviously, if the
program doesn't need to wait to take a lock and merely
reads the data in whatever state it happens to be at that
moment, the program will execute faster than if it had
to wait for locks to be taken and resources to be freed
before processing.

The implications of reading uncommitted data,
however, must be carefully examined before being
implemented. Several types of problems can occur.
Using the previous example, if the long-running

transaction rolled back the UPDATE to EMPNO 10020,
the program using dirty reads may have picked up the
wrong name ("MICHELLE") because it was never
committed to the database.

Inaccurate data values are not the only problems that
can be caused by using UR. A dirty read can cause
duplicate rows to be returned where none exist.
Alternatively, a dirty read can cause no rows to be
returned when one (or more) actually exists.
Additionally, an ORDER BY clause does not guarantee
that rows will be returned in order if the UR isolation
level is used. Obviously, these problems must be taken
into consideration before using the UR isolation level.

Keep in mind, too, that the UR isolation level applies to
read-only operations: SELECT, SELECT INTO, and FETCH
from a read-only result table. Any application plan or
package bound with an isolation level of UR will use
uncommitted read functionality for any read-only SQL.
Operations contained in the same plan or package and
are not read-only will use an isolation level of CS.

When is it appropriate to use UR isolation? The general
rule of thumb is to avoid UR whenever the results must

be 100 percent accurate. Following are examples of
when this would be true:

Calculations that must balance are being performed
on the selected data

Data is being retrieved from one source to insert to
or update another

Production, mission-critical work is being performed
that cannot contain
or cause data integrity problems

In general, most DB2 applications are not serious
candidates for dirty reads. In a few specific situations,
however, the dirty read capability will be of major
benefit. Consider the following cases in which the UR
isolation level could prove to be useful:

Access is required to a reference, code, or look-up
table that basically is static in nature. Due to the
non-volatile nature of the data, a dirty read would
be no different than a normal read the majority of
the time. In those cases when the code data is being
modified, any application reading the data would
incur minimum, if any, problems.

Statistical processing must be performed on a large
amount of data. Your company, for example, might
want to determine the average age of female
employees within a certain pay range. The impact of
an uncommitted read on an average of multiple
rows will be minimal because a single value changed
will not greatly impact the result.

Dirty reads can prove invaluable in a data
warehousing environment that uses DB2 as the
DBMS. A data warehouse is a time-sensitive,
subject-oriented, store of business data that is used
for online analytical processing. Other than periodic
data propagation and/or replication, access to the
data warehouse is read-only. Because the data is
generally not changing, an uncommitted read is
perfect in a read-only environment due to the fact
that it can cause little damage. More data
warehouse projects are being implemented in
corporations worldwide and DB2 with dirty read
capability is a very wise choice for data warehouse
implementation.

In those rare cases when a table, or set of tables, is
used by a single user only, UR can make a lot of

sense. If only one individual can be modifying the
data, the application programs can be coded such
that all (or most) reads are done using UR isolation
level, and the data will still be accurate.

Finally, if the data being accessed already is
inconsistent, little harm can be done using a dirty
read to access the information.

Although the dirty read capability can provide relief to
concurrency problems and deliver faster performance
in specific situations, it also can cause data integrity
problems and inaccurate results. Be sure to understand
the implications of the UR isolation level and the
problems it can cause before diving headlong into
implementing it in your production applications.

Summary

It is important for DB2 DBAs and application
programmers to know the four isolation levels and their
impact on SQL. Using the isolation levels is an effective
way to control concurrency and locking for your DB2
applications.

From IDUG Solutions Journal, November 2003.

© 2003 Craig S. Mullins, All rights reserved.
Home.

http://www.idug.org/
http://www.craigsmullins.com/

