

 Craig S. Mullins
Return to Home Page

Vol. 14, No. 1 (Spring 2007)

The Buffer Pool

DB2 Database Performance Fundamentals
 By Craig S. Mullins

Applications that access relational databases are only as
good as the performance they achieve. And every user wants
their software to run as fast as possible. As such,
performance tuning and management is one of the biggest
demands on the DBA’s time. When asked what is the single
most important or stressful aspect of their job, DBAs typically
respond “assuring optimal performance.” Indeed, a recent
Forrester Research survey indicates that performance and
troubleshooting tops the list of most challenging DBA tasks.

http://www.craigsmullins.com/

Handling performance problems should be an enterprise-
wide endeavor. And most organizations monitor and tune the
performance of their entire IT infrastructure encompassing
servers, networks, applications, desktops, and databases.
However, the task of enterprise performance management
frequently becomes the job of the DBA group. Anyone who
has worked as a DBA for any length of time knows that the
DBMS is usually "guilty until proven innocent." Every
performance problem gets blamed on the database
regardless of its true source cause. DBAs need to be able
research and decipher the true cause of all performance
degradation, if only to prove that it is not caused by a
database problem.

As such, DBAs must be able to understand at least the
basics of the entire IT infrastructure, but also need to have
many friends who are experts in other related fields (such as
networking, operating systems, communication protocols,
etc.). Possessing a sound understanding of the IT
infrastructure enables DBAs to respond effectively when
performance problems arise. Event-driven tools exist on the
market that can make performance management easier by
automatically invoking pre-defined actions when specific
alerts are triggered. For example, an alert can be set to
proactively reorganize a database when it reaches its storage
capacity. And other tools exist that can ease the burden of
performance management and analysis.

But many of the supposedly proactive steps taken against
completed applications in production are truly mostly
reactive. Let's face it, DBAs are often too busy taking care of
the day-to-day tactical database administration tasks to
proactively monitor and tune their systems to the degree they
wish they could. You know the drill – a user calls with a
response time problem... a table space runs out of space to
expand... the batch window extends into the day… someone
submitted that "query from hell" that just won't stop running.
Those of you in the trenches can relate — you've been there;
done that.

Defining Database Performance

All of this discussion is useful, but it begs the question: just
what do we mean by the term database performance? We
need a firm definition of database performance before we can
learn ways to plan for efficiency. Think, for a moment, of
database performance using the familiar concepts of supply
and demand. Users demand information from the database.
The DBMS supplies information to those requesting it. The
rate at which the DBMS supplies the demand for information
can be termed "database performance."

Five factors influence database performance: workload,
throughput, resources, optimization, and contention.

The workload that is requested of the DBMS defines the
demand. It is a combination of online transactions, batch

jobs, ad hoc queries, data warehousing analysis, and system
commands directed through the system at any given time.
Workload can fluctuate drastically from day to day, hour to
hour, and even minute to minute. Sometimes workload can
be predicted (such as heavy month-end processing of
payroll, or very light access after 5:30 p.m., when most users
have left for the day), but at other times it is unpredictable.
The overall workload has a major impact on database
performance.

Throughput defines the overall capability of the computer to
process data. It is a composite of I/O speed, CPU speed,
parallel capabilities of the machine, and the efficiency of the
operating system and system software. The hardware and
software tools at the disposal of the system are known as the
resources of the system. Examples: database kernel, disk
space, cache controllers, and microcode.

The fourth defining element of database performance is
optimization. All types of systems can be optimized, but
relational databases are unique in that query optimization is
primarily accomplished internal to the DBMS. However, there
are many other factors that need to be optimized (SQL
formulation, database parameters, etc.) to enable the
database optimizer to create the most efficient access paths.

When the demand (workload) for a particular resource is
high, contention can result. Contention is the condition in

which two or more components of the workload are
attempting to use a single resource in a conflicting way (for
example, dual updates to the same piece of data). As
contention increases, throughput decreases.

Therefore, database performance can be defined as the
optimization of resource use to increase throughput and
minimize contention, enabling the largest possible workload
to be processed. Of course, I do not advocate managing
database performance in a vacuum. In addition, applications
regularly communicate with other subsystems and
components of the IT infrastructure. Each of these must also
be factored into the overall performance planning of your
organization. But it is wise to place limits on the actual
responsibility for tuning outside the scope of this definition. If
it is not defined above, it probably requires expertise outside
the scope of database administration. Therefore,
performance management tasks not covered by the above
description should be handled by someone other than the
DBA — or at a minimum shared between the DBA and other
technicians.

A Basic Database Performance Roadmap

Now that we have defined what we mean by database
performance, we need to forge a basic plan to ensure that
database performance management and analysis is
accomplished at our site.

Every database application, at its core, requires three
components to operate:

· the system,

· the database, and

· the application.

This is true for any application that accesses data in a
database. To improve performance, the administrator must
be able to monitor and tune each of these components. But
what, exactly, are each of these components?

The system consists of the system software and hardware
required for the application to provide service. This includes
the computer itself, its disk subsystems, network
connections, and all peripherals. From a software perspective
the system includes the operating system, the file system, the
DBMS, networking protocols, and any related middleware,
such as transaction processors or message queues.

To deliver system performance, the DBA must have the
resources to monitor, manage, and optimize the performance
of these disparate pieces of hardware and software. Some of
the tasks required for system tuning include properly
allocating and managing memory structures (such as buffer
pools and program cache area), managing storage,
integrating the DBMS with other system software, properly

using database logs, and coordinating the DBMS's operating
system resources. Additionally, DBAs must control the
installation, configuration, and migration of the DBMS
software. If the system isn't performing properly, everything
that uses the system will perform poorly. In other words, a
poorly performing system affects every database application.

Memory structures, specifically data buffers, are probably the
most important aspect of system performance with respect to
database systems. When data can be accessed from
memory instead of from disk overall performance can be
improved by several orders of magnitude.

Indeed, every DBMS works best when it uses memory
efficiently: this is where autonomic tuning is proving to be
beneficial. By allowing the system to expand, reallocate, and
adjust memory across multiple database buffers, shops can
dramatically improve performance, especially for systems
with unpredictable and variable workloads. Many modern
performance solutions offer built-in intelligence enabling the
system to manage itself.

The second component of database performance is the
database itself and the structures of which it is composed.
The database stores the data used by applications. When the
application needs to access data, it does so through the
DBMS to the database of choice. If the database isn't
optimally organized or stored, the data it contains will be

inefficient and possibly difficult to access. The performance of
every application that requires this data will be negatively
affected.

Over time, as data is modified and updated, the DBMS may
have to move it around within the database. Such activity
causes the data to become fragmented and inefficiently
ordered. The longer the database remains online and the
more changes made to the data, the more inefficient
database access can become. To overcome disorganized
and fragmented databases, DBAs can run the reorganization
utility to refresh the data and make the database efficient
once again. But the key to successful reorganization is to
reorganize only when the database requires it; instead, some
companies over-reorganize by scheduling regular database
reorganization jobs, whether or not the database is
fragmented. Overreorganizing wastes valuable CPU cycles.

Both DB2 itself and third party tools and utilities provide
autonomic methods to discover and correct poorly organized
databases. Reorganization is becoming more automated with
real-time accumulation of database statistics accompanied by
intelligent agents that understand the meaning of those
statistics and what to do when the statistics aren't optimal. Of
course, the system must be aware of your unique
environment; for example, you don't want an automatic
reorganization to start up in the middle of your most important
user's long-running query.

But reorganization is only one of many database
performance tasks required. Others include data set
placement, partitioning for parallel access, managing free
space, and assuring optimal compression.

The third and final component of database performance
focuses on the application itself. Indeed, as much as 80% of
all database performance problems are caused by inefficient
application code. The application code consists of two parts:
the SQL code and the host language code in which the SQL
is embedded.

SQL is simple to learn and easy to start using. But SQL
tuning and optimization is an art that takes years to master.
Every DBMS provides a method of inspecting the actual
access paths that will be used to satisfy SQL requests. DBAs
must be experts at understanding the different types of
access paths, as well as which ones are best in which
situation. Furthermore, DBAs must be able to interpret the
output of the access path explanation produced by the
DBMS, since it is often encoded and cryptic.

Host language code refers to the application programs
written in C, Cobol, Java, Visual Basic, or the programming
language du jour. It's quite possible to have finely tuned SQL
embedded inside of inefficient host language code. And, of
course, that would cause a performance problem.

Where to Start?

OK, so we’ve got a basic performance roadmap, but where
should we start? This is always problematic. When
confronted with a performance problem the best approach is
to look for things that have changed recently. Changes can
introduce problems that lead to performance degradation.

Of course, you might not be able to discover what has
changed recently – or perhaps nothing has changed. So
where should we start?

Following the old 80-20 rule, we should focus our attention on
the areas that are most likely to be the cause of the problem.
And, as mentioned earlier in this article, inefficient SQL is the
single most prevalent cause of poor application performance.
So, without any clues where to start, start with the SQL.

Finding the SQL statements that are the most expensive in a
large shop can be an extremely difficult thing to do. Resource
hogging SQL statements might be hiding in one of hundreds
or even thousands of programs. Interactive users who
produce dynamic, ad hoc SQL statements might physically
reside anywhere, and any single one person who is
generating ad hoc queries can severely effect overall
production performance.

A good approach is to use an SQL monitor that can identify
all SQL running anywhere in your environment. Typically,
these tools can rank SQL statements based on the amount of
resources being consumed and track the statement back to

who issued it and from what program it was called. Once you
have identified the top resource consuming statements, you
can concentrate your tuning efforts on the most costly
statements.

However, it is not always obvious how to tune poorly coded
SQL statements to make them better. So we need to go one
step further by using an SQL analysis tool. Such a tool can
be used to identify and explain how the SQL is currently
being run and to provide a set of expert tuning
recommendations on how to fix each inefficient SQL
statement.

Summary

The purpose of this article is not to introduce specific tuning techniques or scripts,
but to provide an overall perspective on database performance. Database
performance management is a rich area for further investigation and study. Use this
article as a starting point – or as a refresher if you are a long-time practitioner.

In terms of advice, the best I can offer is to be prepared. Read, study, and continue
to learn about DB2, databases, SQL, and performance tuning. There is always
something new you can learn, or at least something that needs to be brushed up on.

And finally, be advised that wise organizations will implement a comprehensive
performance monitoring, tuning, and management environment consisting of
policies, procedures, and integrated performance management tools and utilities.
Failure to do so will surely result in poor database application performance.

From IDUG Solutions Journal, Spring 2007.

© 2007 Craig S. Mullins, All rights reserved.
Home.

http://www.idug.org/
http://www.craigsmullins.com/

