
 Craig S. Mullins
Return to Home Page

August 1998

Java: Hype or Hope?

By Craig S. Mullins

Everybody has heard about Java and how it is going
transform the world of IT — unless you've been living
under a rock. But just because you've heard about it
doesn't mean you understand it. And even if you know
a bit about it, there is always more to discover. Let's
face it, there's a lot of hype out there regarding
anything that concerns the Internet. Is it all hype, or is
there some hope for a brighter multi-platform world?
Let's examine what Java means to the world of DB2.

What is Java?
First and foremost, Java is an object-oriented
programming language. Developed by Sun
Microsystems, Java was modeled after, and most
closely resembles, C++. But it requires a smaller
footprint and eliminates some of the more complex
features of C and C++ (e.g. pointer management).

Java enables animation for and interaction with the
World Wide Web (WWW). Although web interaction is

http://www.craigsmullins.com/

Java's most touted feature, it is a fully functional
programming language that can be used for
developing general purpose programs (independent
from the web).

Using HTML, developers can run Java programs,
called applets, over the web. But Java is a completely
different language than HTML, and it does not replace
HTML. Java applets are automatically downloaded
and executed by users as they surf the web. The Java
applet is run by the web browser.

What makes Java special is that it was designed to be
multi-platform. In theory, regardless of the machine
and operating system you are running, the Java
program should be able to run. Many possible benefits
accrue because Java enables developers to write an
application once and then distribute it to be run on any
platform. Benefits may include reduced development
and maintenance costs, lower systems management
costs, and more flexible hardware and software
configurations.

So, to summarize, the major qualities of Java are:

its similarity to other popular languages
its ability to enable web interaction
its ability to enable executable web content
its ability to run on multiple platforms

Java Database Connectivity (JDBC)
 JDBC is an API that enables Java to access relational

databases. Similar to ODBC, JDBC consists of a set
of classes and interfaces that can be used to access
relational data. Anyone familiar with application
programming and ODBC (or any call-level interface)
can get up and running with JDBC quickly.

Java, IBM, and DB2
Java for OS/390 is IBM's mainframe Java
development environment. Using Java, developers
can build web-based and general purpose business
applications on the mainframe. Likewise, IBM provides
Java support for its DB2 Universal Database (UDB)
platforms, AIX and OS/2, (as do other operating
systems suppliers such as Microsoft with Windows
NT/95, Hewlett-Packard with HP-UX, and of course
Sun with Solaris). With DB2 UDB developers also can
code user-defined functions and stored procedures
that run on the server.

In combination with the Java development
environment, IBM also provides JDBC application
support for Version 5 of DB2 for OS/390 and DB2
UDB. Using Java and JDBC, users can create
applications that might otherwise be written in
COBOL, PL/I, C, or C++.

The intended benefit of JDBC is to provide vendor-
independent connections to relational databases from
Java programs. IBM delivers this (as do most other
RDBMS vendors), but from an industry-wide
perspective, JDBC is still immature. This, coupled with
other problems such as lack of support from Microsoft

and slow performance, will probably limit JDBC
acceptance and growth through the middle of 1999.
But JDBC will most likely succeed and achieve wide-
spread acceptance by the year 2000.

Hype or Hope?
So, given all of the above background, should we be
wary of Java hype or full of Java hope? I think the best
answer is "yes, both!"

Hype
Java is very simply the most hyped phenomenon
since the Internet and the WWW. This does not mean
it is without merit; just that its merits are oversold.
There is simply no chance that 100% compatibility of
Java across platforms will ever become reality.
Differences will exist from platform to platform and
system to system. Witness the recent events where
HP delivered a Java Virtual Machines (JavaVM) for
embedded systems that closely conforms to, but is
independent from, the Sun standard. A JavaVM is
required for each platform on which Java is to run. Key
characteristics of the Java language require the
presence of a substantial runtime environment, the
JavaVM.

Differences will continue to occur because each
vendor's offerings are different and require differences
to optimize their platforms. Sun has sued Microsoft to
make it remove the Java logo from its web site
because its Java implementation does not conform to
Sun's standard. Furthermore, vendors want

differences; users are the only ones who want
conformity. Once again, witness Microsoft's efforts to
promote ActiveX as an alternative to Java for
interactive web applications. Without differences,
hardware and software becomes a commodity and the
only ones who win are the users. That would be nice,
but it is not likely to occur.

Furthermore, there are other reasons why Java is not
all it is cracked up to be. Java is an interpreted
language. This makes it slower than compiled
languages, so performance will be an issue. Many
vendors (including IBM) are releasing just-in-time (JIT)
compilers to react to this deficiency, but even a JIT
compiler will be slower than a truly compiled and
optimized language. Java is most useful for
applications that require a high productivity
development environment and high portability for the
resultant programs. If instead the application requires
maximum performance, platform specific processing,
or the use of robust compiler technology, then C++ (or
another time-tested 3GL) will usually be preferable to
Java.

Finally, there is a lack of infrastructure and tools
available for the Java environment. Java is only just
three years old and organizations are not yet fully
competent on how to implement, administer, secure,
and maintain the Java environment. And vendors have
not yet delivered robust tools needed to provide a
robust application development lifecycle (testing,
change management, debugging, implementation,

etc.).

Hope
But, none of these issues will sound the death knell for
Java. It is truly here to stay because of its many
benefits. Although 100% platform independence is
unlikely, Java will get us closer than we ever have
gotten before. At least there is a standard at the onset
of the Java revolution that can be used as a gauge for
successful or unsuccessful Java compliance.

And the list of current deficiencies will slowly
evaporate over the course of the next few years.
Every vendor is working on Java tools that will solve
the infrastructure and development problems. This is
true because more and more corporations are using
Java to develop new and exciting applications.
According to a 1997 survey by Forrester Research,
52% of the Fortune 1000 firms surveyed were actively
building applications with Java and 81% of those plan
to build Java mission-critical systems by 1999. The
same survey also shows that using Java to drive
database updates is increasing in popularity with 54%,
versus 4% the year before. Java is being used
currently, and its use will continue to grow.

JIT Java compilers are getting faster and vendors are
working on Java compilers that will probably resolve
the speed issue once and for all.

A big benefit of Java applications that is hard to ignore
is a lower cost of ownership compared to client/server

applications. With client/server applications there are
typically numerous DLLs scattered across machines
that require modification, removal, or additional DLLs
each time the application is updated. With Java you
have a better model because the code is downloaded
when it needs to be run. Of course, this can impact
performance when the code is being downloaded, but
at least the application will be more likely to run
correctly.

For DB2 users, Java is supported by Net.Data. With
Net.Data and Java, developers can create Java
applets to process the results of Net.Data applications
and create graphs, charts, and other interactive
elements. As Java matures, it will become the way
that you write stored procedures, user-defined
functions, and triggers. Oracle, Sybase, and Informix
stored procedures are based on proprietary SQL;
DB2's rely on 3GL programs. Java stored procedures
have the promise of running securely in any database
— providing a possible huge benefit.

Eventually, developers will be able to embed SQL
directly into Java programs, call Java programs from
SQL statements, and even store Java object instances
into DB2 columns. All of these things will enable users
to create active DB2 databases. This is goodness
because it places the responsibility for taking the
proper action in a single, central, secure place — the
database.

Finally, Java's ability to make the web interactive will

ensure the success of Java. In as much as we as DB2
developers want to enable our users to access DB2
data over the web, we will rely on Java to help us do
that.

Synopsis
There is enough hope for Java that we should all be
able to put up with the hype that is out there. With
time, patience, and a little luck, we will have web-
enabled, multi-platform, distributed, Java applications
accessing our active DB2 databases.

From IDUG Solutions Journal, August 1998.

 © 1999 Mullins Consulting, Inc. All rights reserved.

 Home. Phone: 281-494-6153 Fax: 281-491-0637

http://www.idug.org/
http://www.craigsmullins.com/

