
 Craig S. Mullins
Return to Home Page

November 1994
 Getting Integrity in SYBASE SQL Server 10

by Craig S. Mullins

User-defined integrity is a component of the
relational model that has been neglected for
too long. Fortunately, several DBMS vendors
have begun to implement more robust user-
defined integrity into their products.
Foremost among these vendors is Sybase, Inc.
(Emeryville, CA) with their SQL Server 10
product offering.

Defining User-Defined Integrity

Most data professionals are aware that the
relational model provides basic integrity
features to support both referential integrity
and entity integrity. However, the concept of
user-defined integrity is also inherent to the

http://www.craigsmullins.com/

relational model. When user-defined integrity
is supported, the RDBMS can automatically
manage the particular values that are stored
within the database.

User-defined integrity constraints go far
beyond simple data type checking and
referential value checking. Values can be
excluded from a specific column or columns
based upon business requirements. In the
absence of user-defined integrity support, this
type of functionality is typically performed by
an application program. A systematic and
non-bypassable method of integrity checking
without the need to write code provides an
obvious benefit in terms of reduced
development time.

Types of User-Defined Integrity

SYBASE SQL Server 10 provides user-defined
integrity in several different ways, each of
which will be introduced in this article. The
following features support user-defined
integrity:

Check Constraints
Rules
Unique Constraints
User-Defined Data Types
Defaults
Triggers

Check Constraints

A check constraint is a mechanism for
allowing predicates to be defined on a
column. The predicate is attached to the
column as DDL and performs automatic edit
checking of supplied values. Each check
constraints is performed whenever data is
inserted or updated. Check constraints can be
coded at the column or table level.

Let’s examine column-level constraints first.
Column-level constraints consist of a name
and the actual predicate. Refer to Figure 1.

Figure 1. Column-Level Check Constraint

create table employee
 (emp_id int not null,

 ssno char(9) not null,
 emp_name varchar(50) not
null,
 salary numeric(12,2)
not null
 constraint salary_cons
 check (salary <
50000.00),
 comm numeric(12,2)
null,
 bonus numeric(9,2)
null)

Every constraint must have a name. Failure to
explicitly specify a name causes SQL Server to
automatically generate a unique name for the
constraint. It is wise to always explicitly assign
names to each check constraint because the
constraint name that SQL Server generates
can be difficult to administer later. The name
of the constraint in the depicted example in
salary_cons. The predicate portion defines
the actual conditions of the edit check and is
coded as a typical SQL where clause (without
the actual "where" keyword, of course).

Unfortunately, check constraints can not be
defined as a select from another table. This

limits their overall benefit. However, check
constraints, even in this limited form, are
superior to coding the condition into each and
every application program that updates the
column or columns in question.

In addition to column-level check constraints,
it is possible to specify check constraints at
the table level. Instead of being attached to a
single column, the constraint is attached to
the entire table.

It is usually sufficient to code a check
constraint at the column level. However, there
are situations were table-level check
constraints are required. Any time two
columns of the same table need to be
specified in the constraint, a table-level check
constraint is required.

The sample shown in Figure 2 depicts a table-
level check constraint to ensure that an
employee’s bonus is less than or equal to his
commission. It would have been impossible to
code this particular constraint at the column

level because it accesses two columns instead
of one column and one constant as the
previous example showed.

Figure 2. Table-Level Check Constraint

create table employee
 (emp_id int not null,
 ssno char(9) not null,
 emp_name varchar(50) not
null,
 salary numeric(12,2)
not null,
 comm numeric(12,2)
null,
 bonus numeric(9,2)
null)
 constraint
do_not_payem
 check (bonus <= comm)
)

User-defined messages can be attached to
both column-level and table-level constraints.
Consider the check constraint depicted in
Figure 2 for the salary column. The message
"salary too high" can be assigned to the
constraint by adding a message and binding it
to the constraint as follows:

sp_addmessage 20005, "Salary
Too High"

sp_bindmsg do_not_payem,
20005

Messages are always assigned a number
greater than 20,000 because the first 19,999
message numbers are reserved for SQL
Server use. The message text can be up to
255 characters long.

Finally, information on check constraints can
be retrieved from the system using the
sp_helpconstraint system procedure. By
passing a table name as a parameter to
sp_helpconstraint, a list of all constraints
defined for the given table is displayed. This
procedure is new as of System 10.

Rules

Rules are similar to check constraints, but
rules are "free-standing" database objects.
They are created using the create rule DDL
statement and exist independently of any

table or column. Like check constraints, rules
can be used to define data validation. Once
created, a rule can be bound to a table
column. Thereafter, whenever data is inserted
or updated, the rule is checked to ensure that
the data modification complies with the rule.

The advantage of creating "free-standing"
rules instead of using check constraints is to
enhance reusability. Rules are reusable, check
constraints are not! A free-standing rule can
be created and applied as follows:

create rule state_rule as
 @state in ("IL", "WI", "IN",
"IA")

exec sp_bindrule "state_rule",
"authors.state"

The first statement creates the rule; the
second binds it to a specific column in a
specific table. The same rule can be bound to
as many different columns in as many
different tables as is desired. Keep these rules
of thumb in mind before binding a rule to a
column:

A column can have one and only
one rule assigned to it. SQL Server
will, however, allow a rule to be
bound to a column that already
has a rule defined. In this case,
the last rule bound to the column
takes precedence.
A column can have both a rule
and a column-level check
constraint assigned to it. If the
rule and the check constraint
conflict, then you may have
trouble!
Rules are applied whenever data
values are inserted or updated.
A rule can be removed from a
column when it is no longer
required. This can be
accomplished using the
sp_unbindrule system procedure.

Check Constraints or Rules?

The second bullet in the previous list
introduces an interesting problem. When

should check constraints be used? When
should rules be used? And what if both are
used on the same column?

Check constraints were added to SQL Server
10 to support the ANSI SQL standard. There is
no concept of a rule currently in the ANSI
standard. SQL Server has featured rules for
many releases. Both integrity features
implement the same basic function: they
place restrictions on the data values that can
be stored in a column.

Of the two methods, rules are more flexible.
Rules are created as free-standing database
objects and can be bound to columns and
user-defined data types. Check constraints, on
the other hand, are specified in the table DDL.
They are useful when a constraint exists
between two columns of the same table.

In general, the following rules of thumb
should be followed:

Favor the use of rules over check
constraints when either would
suffice and portability is not
essential. Rules are reusable and
more flexible.
Favor the use of check constraints
if conformance to the ANSI SQL
standard is required or if
applications are to be ported from
environment to environment or
from DBMS to DBMS. Check
constraints are supported by
many different DBMS products;
rules are not.
Favor the use of check constraints
when a comparison is required
between two columns of the same
table. For example, if an
employee's bonus must always be
less than a percentage of his
salary, the following check
constraint would be appropriate:

check (bonus < salary *
.10)

This can not be achieved using
a rule. Rules must always
reference one variable
(column) and one constant.

It is possible for both a rule and a
check constraint to be defined for
a single column. If this occurs, be
sure that the two are compatible.
For example, avoid the following
scenario:

check (state in ('IL', 'PA',
'FL'))

create rule state_rule as
 @state in ('GA', 'CA',
'IL')

sp_bindrule state_rule,
"table.state"

In this case, only rows
specifying Illinois (IL) as the
state could ever be inserted to
the specified table!

Unique Constraints

SQL Server 10 also supports unique
constraints. This type of constraint is applied
to a column or columns to ensure that
duplicate value can not be stored.

SQL Server enforces uniqueness by
automatically creating a unique index on the
specified column(s). Therefore, unique
constraints can also specify the type of index
to be generated: clustered or nonclustered.
Nonclustered is the default. A unique
constraint will allow one null to be stored in
the column(s).

Although the relational model forbids
duplicate rows, most relational DBMS
products allow duplicates to be stored by
default. Unique constraints enable the
database designer to force the DBMS to
follow this relational tenet.

User-Defined Data Types

All RDBMS products provide basic system
data types such as integer, character, and
decimal. SQL Server, however, enables users
to define additional data types called user-
defined data types. User-defined data types
are based upon system-defined data types
but can provide additional constraints on the
data content. For example, the user-defined
data type can provide a precision, scale,
and/or length attribute as well as a column
property (i.e., null or not null). User-defined
data types, once created in the database,
become fundamental data types; usable by
any table in that database just like a system-
defined data type. Rules and defaults can be
bound to user-defined data types.

An example of a user-defined data type
definition follows:

sp_addtype proper_name,
"char(40)", "null"

User-defined data types are quite useful for
ensuring consistency throughout a database

design. Consider, for example, a system in
which it is necessary to store a social security
number in multiple tables. Confusion may
arise as to whether the number should be
stored in character or numeric format.
Furthermore, if it stored in character format,
should it contain embedded hyphens?
Consult Figure 3 for a list of valid options for
storing social security numbers.

However, a user-defined data type can be
defined, say SSN. The SSN data type will be
standard and can be used for all columns that
store social security number data. This
ensures consistency from table to table and
column to column. Whether the user-defined
data type is character or numeric is not
important. The point is that the data
definition is consistent.

Figure 3. Social Security Number Storage
Options

Data Type Example

char(11) "123-45-
6789"

char(9) "123456789"

integer 123456789

decimal 123,456,789

An additional benefit that is accrued by
establishing user-defined data types is a
higher level of abstraction in a database
design. It is much easier to discuss the salary
data type (with all its implied definitions,
properties, and constraints) than it is to talk
about a decimal(12,2) or smallmoney data
type (with no implied characteristics other
than its inherent type).

User-defined data types can also decrease
maintenance. When a default or rule is bound
to a user-defined data type, every column that
is assigned that user-defined data type
"inherits" the attached default and/or rule.
Likewise, when a rule or default bound to a
user-defined data type is changed, the change

is automatically reflected in all columns that
are assigned that user-defined data type.

Supporting Domains Using SQL Server

Domains have been a part of the relational
model since its inception in 1969. However,
no current RDBMS explicitly supports
domains. SQL Server 10 supports domains
only implicitly and incompletely.

What is a domain? According to Chris Date: "A
domain is the set of all possible data values of
some particular type." SQL Server’s domain
support is only partial because it does not
support the following domain characteristics:

user-defined comparison
operators
limiting comparison operators by
domain
checking to ensure that two
columns to be compared are
pooled from the same (or
compatible) domains

Domains can be partially implemented in SQL
Server using a combination of user-defined
data types, rules, and defaults. Suppose that
you wish to define a domain for product
codes to be stored in a SQL Server database.
All product codes conform to the following
standards:

product codes are six bytes long
a product code must begin with
an alphabetic character
the second byte must be numeric
(but can not be 0), the next three
bytes can be anything, and the
last byte must be either "@" or "#"
if a product code is unknown it
should default to null (unless it is
the primary key or a part of a
primary key)

To implement a domain for the product code
take the following steps:

1. Create a user defined data type, say
prodcode, as follows:

sp_addtype prodcode,
"char(6)", "null"

2. Create a rule, say prodcode_rule, as
follows:

create rule prodcode_rule
as

@prodcode like "[A-Z][1-
9]___[#,@]"

3. Create a default, say
prodcode_deflt, as follows:

create default
prodcode_deflt as NULL

4. Create all columns containing
product code information specifying
the "prodcode" user-defined data
type. If the column participates in a
primary key, specify the "not null"
property directly in the table to over-
ride the property in the user-defined
data type. Bind the prodcode_rule and
the prodcode_deflt to all columns
containing product codes.

Remember, however, that this provides
rudimentary domain support only. It does not
implement full domain support as described
in Codd and Date's relational writings.

Triggers

It is also possible to support user-defined
integrity in SQL Server through the use of
triggers. Triggers are event-driven specialized
procedures that are stored in the RDBMS.
Each trigger is attached to a single, specified
table. Triggers can be thought of as an
advanced form of "rule" or "constraint"
written using procedural logic. A trigger can
not be directly called or executed; it is
automatically executed (or "fired") by the
RDBMS as the result of an action—usually a
data modification to the associated table.

Although triggers are often used for
implementing referential integrity, there are
many practical reasons for using triggers to
implement user-defined integrity. Quite often
it is impossible to code business rules into the

database using only DDL. For example, the
business rule may be too complex to support
using a rule or check constraint. Triggers offer
a flexible vehicle for the specification of user-
defined integrity. Complex strings of
instructions can be coded and stored within
the DBMS as a trigger. Whenever data is
added, removed, or modified, the logic in the
trigger will be executed to ensure the required
integrity constraints are maintained.

Synopsis

SQL Server 10 provides a wealth of
mechanisms for supporting user-defined
relational integrity. Developers would be wise
to utilize these features to develop robust
applications that provide system-manage data
integrity, promote reusability, and provide
consistent data structures.

From DBMS Magazine, November 1994.

© 1994, 2000 Craig S. Mullins. All rights reserved.
Home.

http://www.dbmsmag.com/
http://www.craigsmullins.com/

