
 Craig S. Mullins
Return to Home Page

Winter 1994

An Introduction to the Architecture of
Sybase SQL Server

By Craig S. Mullins

Sybase SQL Server is unique among the most popular
RDBMS products in that it was planned and designed
to operate within a client/server architecture. Sybase,
Inc., built SQL Server with the network in mind. Each
client process establishes a connection to SQL Server
over the network. Information is sent from client to
server and back again over the network, using
standard application programming interfaces (APIs).

Other similar RDBMS products were ported to a
networked environment only after the client/server
"boom" began. Having the network as an integral
component of the SQL Server environment aids in its
ability to support robust, production-level client/server
development efforts.

http://www.craigsmullins.com/

Single-process, multi-threaded architecture
SQL Server is a multi-user, relational database server
built on an open, client/server architecture providing
high performance, high availability, and scalability for
robust, production-level application development. Now
what exactly does that imply?

DBMS software can be architected in one of two ways:

Single-process: A product designed to use a
single-process architecture single threads
requests through the DBMS. This can produce
bottlenecks in a multi-user environment. Single-
process architectures are typical for single-user
workstation DBMS products.

 Multi-process: A product designed to use a
multi-process architecture creates new processes
to handle each new request. Quick exhaustion of
system resources (such as memory) can occur as
more processes are initiated. Many multi-user
DBMS products are multi-process architected.

SQL Server uses a single-process, multi-threaded
architecture, employing multiple threads within a
single process to service multiple users. Only one
process will ever run on the server regardless of how
many clients are connected. Employing this type of
architecture reaps two benefits:

1. Context switching is more efficient because SQL
Server handles it internally, instead of allowing it

to be handled at the operating system level.

2. System resources are conserved and response
time is minimized because a single process
consumes fewer resources (i.e., less memory)
than multiple processes.

 Sybase has indicated, however, that future
implementations may be architected differently in
order to take better advantage of alternate platforms
and their inherent threading capabilities. SQL Server
manages data and executes queries against the data
that it administers. Clients access the server, over the
network, to request data. Sybase provides Open
Server and Open Client to enable this type of
processing. These are two collections of libraries
containing APIs that enable the client and the server

to communicate.

Open Client is required to enable client applications to
send requests with SQL Server. Some SQL Server
users still refer to Open Client by its older name, DB-
Library. Open Server, on the other hand, is not
required. Clients can communicate directly with SQL
Server, or can interface with Open Server APIs to
communicate to other DBMSs, data sources, and/or
services.

SYBASE architecture components
To understand the architecture of SQL Server, it is
helpful to decompose it into seven key components.
These components operate in an integrated manner to
provide support for the client tasks:

1. The kernel performs many jobs normally done by
an operating system. It provides for such tasks as
context switching, scheduling, I/O, and network

communications. Placing this type of functionality
into the kernel yields two benefits:

Supporting operations that are typically
associated with the operating system within
SQL Server eliminates operating system
differences between platforms. This enables
SQL Server to function (more or less) the
same in each different environment, thereby
promoting scalability.

Inherent inefficiencies in each operating
system can be overcome by providing very
efficient routines specifically engineered to
the manner in which SQL Server operates.

2. The sequencer/distributor controls application
execution. When any application task requests
database services, the sequencer/distributor
analyzes the request, determines how it should
be handled, and passes the request to the
appropriate component for processing.

Additionally, the sequencer/distributor controls the
sequence of procedural execution. Because
Transact-SQL can contain looping constructs and
multiple SQL statements, the sequence in which
statements are executed is important. As
requests are received by the
sequencer/distributor, it will do three things:

perform authorization checking to ensure that
the requester is authorized to access the
data as requested
sequence the request into internal structures
called command trees
pass the request on to the parser for
subsequent processing.

The sequencer/distributor also manages the
execution of stored procedures and sends
portions of distributed queries to the appropriate
database for processing.

3. The parser examines the SQL requests that are
sent to SQL Server for processing. This is
necessary to ensure that each statement is
correct and can actually be executed. The parser
examines SQL in two phases:

Phase 1. The SQL is checked for syntax. The
parser will ensure that all appropriate
keywords are used and spelled accurately,
that commas, periods, and punctuation are
placed correctly; it also ensures the general
syntactical validity of the entire SQL
statement.

Phase 2. The SQL statement is checked for
semantic correctness. This is basically a final
check asking, in essence, "Does this request

make sense?" Semantic issues include:

Do the objects that are being requested
for access or modification exist?
Do any objects that are being created
not exist?
Can the column be set to null (i.e., is it
nullable)?

4. The optimizer is the inference engine that

determines the best possible access strategy to
satisfy SQL requests. The SQL Server optimizer
is cost-based. Using statistical input (stored by
SQL Server) on the tables being accessed, the
optimizer chooses the best access method/join
strategy to accommodate a given query. The
optimizer makes several estimates based upon
the statistics generated by the update statistics
utility. If statistics have not been gathered, then
the optimizer uses default statistics.

5. The compiler accepts the parsed and optimized
query and compiles it into executable code based
on the instructions forwarded to it by the
optimizer.

6. The transaction manager component oversees all
data modification operations. It is responsible for
managing data inserts, updates, and deletes. The
decision whether to use immediate or deferred
update processing is made by the transaction

manager.

In order to ensure data validity and recoverability,
the transaction manager maintains a write-ahead
transaction log which can be used to recover data
in the event of an error. The transaction manager
also administers begin-and-end transaction
requests.

7. Six managers within SQL Server perform the
following tasks:

The Allocation Manager manages disk
allocation tasks such as handling inserts to
full pages and adding space to a database.

The Cache Manager, sometimes called the
Buffer Manager, manages the data and
procedure caches. Caching is used to retain
information in memory so that when it is
needed later, disk I/O can be avoided.

The Index Manager manages the upkeep of
SQL Server indexes. This includes index
searching, modification, and space
allocation.

The Lock Manager administers locks for
SQL Server resources thereby ensuring data
integrity as users concurrently access and
update SQL Server objects.

The Sort Manager is used to sort data as
required by SQL Server. Operations that
perform a sort include:

the ordering of query results (ORDER
BY)
aggregation (GROUP BY)
duplicate (UNION/DISTINCT)
index creation

The Text/Image Manager manages the
tasks of retrieving, searching, and
manipulating text and data types.

Synopsis
 The architecture of SYBASE SQL Server enables

developers to create robust, production-level
client/server applications. A basic understanding of the
components of that architecture will aid developers to
create optimally performing applications.

EDGE Magazine Online, published by PLATINUM technology,
inc.

© 1999 Craig S. Mullins. All rights reserved.
 Home.

http://www.craigsmullins.com/

