
 Craig S. Mullins

Return to Home Page
April 2001

Why Data Still Matters
By Craig S. Mullins

Over the years, many technologies and marketers have claimed that
data has become irrelevant and that some “new and improved”
technology, technique, or ideology will replace data as the center of
IT and data processing. But it has yet to happen, and it never will
happen, either!

One pretender to the throne was (dare I say, is) object oriented
technology. The object proponents claim that objects, because they
encapsulate both data and the processes that manipulate the data,
are superior to data. This is pure fantasy. OO development works
well for pre-planned, recurring workloads. When the developer can
plan and implement all of the methods required for the object, the
OO way of doing things will work fine. But is this really anyone’s
idea of reality?

Many workloads and requests are unplanned. Ad hoc queries,
OLAP, and data mining require access to data in ways that were not

http://www.craigsmullins.com/

originally devised when the data (or object) was first created. A
proper database design, created from a logical data model, and
implemented using a relational database enables ad hoc access to
data using SQL. If instead you had to rely on the “OO way” you
would have to develop new methods for the objects to look at the
data encapsulated therein in a different way. The performance of the
new methods is likely to be poor if the data within the object must be
accessed in very different ways.

But the matter gets further complicated if your unplanned data
analysis requires data encapsulated in multiple objects. The OO
way would require multiple methods to be invoked by each object
that contained the required data and then some program to cobble
the results together. The beauty of relational databases using SQL
is their flexibility and suitability to perform unplanned data gathering
and analysis, quickly and with minimal effort. And without
redesigning the database or writing complex new programs
(methods).

Furthermore, with today’s relational database technology, code can
reside in multiple places: procedural code on the database server in
the form of stored procedures and user-defined functions, within
active database rules in the form of triggers and constraints, and on
multiple application tiers. Rigid conformance to encapsulated
methods within objects imposes a strict development methodology
that may cause more harm than good.

The argument made by OO proponents goes
something like this: First of all, an object is a
more natural model for representing the real
world. By adhering to OO tenets the potential for
reuse is high. Furthermore, OO properties such
as inheritance and polymorphism provide
additional flexibility for application development,
enabling the programmer to modify objects to suit
the circumstances. The overall goal is to use OO

development techniques to create reusable
components that can be combined together to
build applications.

The argument is compelling, but misleading. To whom is an object
“more natural,” and as compared to what? It is very natural for
people to relate to most data the way a relational database does, as
rows and columns – we do it every day on business forms,
checkbook registers, spreadsheets, phone books, and so on.
Furthermore, it is quite possible to create reusable components
without adhering to the OO philosophy or using OO development
techniques. CBD (component-based development) proponents are
doing this very well today without rigidly conforming to OO
development rules.

Now, I don’t want to totally and completely dismiss object-oriented
technology, but it is within the realm of programming that it provides
benefit. Any benefits OO can provide to DBMS technology have
already been incorporated into most DBMS products (that is,
extensible data types). For OO to achieve any long-term success, a
practical OO development environment that interoperates with and
maps to relational databases must be established. And it must not
compromise good data modeling and relational database design
practices in doing so.

The bottom line is that data has intrinsic value and it should not be
forced to co-exist with program logic (methods) before it can be
stored. Neither should limitations be placed on data that would
require complex object-oriented program logic to be written for every
data access requirement.

Data is a corporate asset and should be treated as such. There are
myriad benefits to modeling data. Persistent data stored in relational
databases is an elegant and useful way to support the planned and
unplanned needs of your organization. And it will continue to be so
for many years to come.

From Database Trends, April 2001.

© 2001 Craig S. Mullins, All rights reserved.
Home.

http://www.databasetrends.com/
http://www.craigsmullins.com/

