
 Craig S. Mullins
Return to Home Page

January 2004

The DBA Corner
by Craig S. Mullins

The Death of Denormalization?
Ever since the first relational DBMS products were
introduced, DBAs have fought the battle of normalization
versus denormalization. Normalization is a design approach
that minimizes data redundancy and optimizes data
structures by systematically and properly placing data
elements into the appropriate groupings. A normalized data
model can be translated into a physical database that is
organized correctly. In simple terms, normalization is the
process of identifying the one best place each fact belongs.

E.F. Codd, the creator of the relational model, created
normalization in the early 1970s. Like the relational model of
data, normalization is based on the mathematical principles
of set theory. Although normalization evolved from relational

http://www.craigsmullins.com/
http://www.mullinsconsulting.com/dba_book.htm

theory, the process of normalizing data is generally
applicable to any type of data.

Normalization is a logical process and does not necessarily
dictate physical database design. A normalized data model
will ensure that each entity is well formed and that each
attribute is assigned to the proper entity. Of course, the best
situation is when a normalized logical data model can be
physically implemented without major modifications, but
DBAs frequently had to divert from implementing a fully
normalized physical database due to deficiencies in the
DBMS in terms of performance or design.

So a normalized database implementation minimizes
integrity problems and optimizes updating; but it may do so
at the expense of retrieval. When a fact is stored in only one
place, retrieving many different, but related facts usually
requires going to many different places. This can slow the
retrieval process. Updating is quicker, however, because the
fact you're updating exists in only one place.

Many of our most critical applications drive transactions that
require rapid data retrieval. Some applications require
specific tinkering to optimize performance at all costs. To
accomplish this, sometimes the decision is made to
denormalize the physical database implementation, thereby
deliberately introducing redundancy. This can speed up the
data retrieval process, but at the expense of data
modification.

Why is denormalization dying? First, the modern DBMS has
been improved over the past twenty years. Today's most
popular DBMSs (DB2, Oracle, SQL Server) have better

internal performance features and characteristics that can
more quickly retrieve data. Another factor is better query
optimization. With the in-depth, complex cost-based
optimizers used by modern DBMSs, access paths are
becoming more efficient. Finally, we have materialized query
tables (MQTs), also known as automated summary tables
(ASTs). These are new database objects supported by
some of today's DBMSs that can be thought of as a
materialized view. A table is created based on a SQL
statement, and the DBMS manages the gathering of the
data, which is then physically stored. And the optimizer
"knows" about these objects so a query can be written
against either the materialized query table or the underlying
tables themselves. And the DBMS provides options to
control data refresh rates and other use characteristics.

Using these features, the DBA can create a fully normalized
physical database implementation - and then create
"denormalized" structures using MQTs or ASTs. This brings
the benefit of data integrity because the database is fully
normalized, along with the speed of retrieval using the
materialized query table.

Indeed, the death of denormalization is fast approaching.
And who among us will really miss it when it finally kicks the
bucket?

From Database Trends and Applications, January 2004.

© 2004 Craig S. Mullins, All rights reserved.

Home.

http://www.dbta.com/
http://www.craigsmullins.com/

