
 Craig S. Mullins
 Database Performance Management

Return to Home Page
February 2000

Minimizing Outages With Transaction
Recovery

By Craig S. Mullins

Although data availability is high on the list of
objectives for all DBAs, the demands of e-
business exacerbate the need for high availability.
If your data is not available, your applications can
not run. If your applications can not run, your
company is losing business. And lost business
translates into lower profitability and perhaps a
lower stock valuation for your company. When
you business is tied to the Internet it dramatically
changes the way you need to do business. User

http://www.craigsmullins.com/

expectations are for your businesses to be more
connected, more flexible, and importantly, more
available. It may be three o’clock in the morning
in New York, but it is always prime time
somewhere in the world. So an e-business must
be available and operational 24 hours a day, 7
days a week, 365 days a year (366 for leap
years, like 2000).

In past issues, I have talked about the need for
DBAs to transform themselves into eDBAs to
manage the data requirements of e-businesses.
One of the biggest requirements of the eDBA is to
enhance data availability by reducing or
eliminating outages. But with the demands for
higher and higher availability traditional forms of
database recovery are becoming more and more
inadequate.

To combat this reality the eDBA should become
knowledgeable of transaction recovery
techniques. Transaction recovery provides the
speed and ease of a point-in-time recovery with
the selective capability provided by custom
programming.

Types of Recovery

There are many different types of recovery that
can be performed. The first type of recovery that
usually comes to mind is a recovery-to-current to
handle some sort of disaster. This disaster could
be anything from a simple media failure to a
natural disaster destroying your data center.
Applications are completely unavailable until the
recovery is complete.

Another type of traditional recovery is a Point-in-
Time (PIT) recovery. PIT recovery usually is
performed to deal with an application level
problem. Conventional techniques to perform a
point in time recovery will remove the effects of all
transactions since that specified point in time.
This sometimes can cause problems if there were
some valid transactions during that timeframe
that still need to be applied.

Transaction Recovery is a third type of recovery
that addresses the shortcomings of the traditional
types of recovery: downtime and loss of good
data. Thus, Transaction Recovery is an
application recovery whereby the effects of
specific transactions during a specified timeframe
are removed from the database.

Most technicians think about recovery in order to
resolve disasters such as hardware failures. But
the majority of recoveries in this day-and-age are
performed because of application software error
and human errors. Hardware failures are just not
as prevalent as they used to be. In fact, the
Gartner Group estimates that as much as 80% of
application errors are due to application software
failures and human error.

So, if the reason you need to recover has
changed, it makes sense to rethink your recovery
strategies.

What is Transaction Recovery?

Transaction Recovery is the process of removing
the undesired effects of specific transactions from
the database. Sounds easy, but the actual details
are somewhat complicated. Let’s examine
transaction recovery in a bit more detail.

When performing a traditional recovery, you
execute recover jobs moving object-by-object
through the database. The recovery reads a
backup copy of each object and applies it to the
object. Then database log entries are read and
applied to the object.

Contrast that approach with transaction recovery.
When using transaction recovery the impact is at
the transaction level, not at the database object
level. The transactions are defined by the user’s
view of the process (for example the set of panels
comprising a new hire operation or the set of jobs
that post to the General Ledger).

Why is Transaction Recovery a much-needed tool
in the arsenal of e-DBAs? Well, applications are
prone to all types of problems, bugs, and errors.
Using Transaction Recovery, the DBA can quickly
react to application-level problems and maintain a
higher degree of data availability. The database
does not always need to be taken offline while
Transaction Recovery occurs (it depends on the
type of Transaction Recovery being performed).

So, how exactly is Transaction Recovery
performed? Given that we have identified the
transaction to recover, there are three types of
Transaction Recovery that can be performed:

Point-in-time – remove all the transactions
since a given point in time and then manually
rerun or reenter the work that was valid.
UNDO – back out the bad transactions only.

REDO – remove all the transactions after a
given point in time. Then, redo the good
transactions only.

Let’s examine each of these possibilities in a little
more detail.

Point-in-Time (PIT) Recovery

Point-in-time recovery is the most basic strategy.
It is also the only one actually supported by the
native utilities of most DBMS products. With PIT
recovery, you must be able to determine a
common recovery point for a set of database
objects.

After the PIT recovery you may need to rerun
valid operations that occurred after the point-in-
time to which you recovered.

UNDO Transaction Recovery

The second possibility is to deploy UNDO
Transaction Recovery (refer to Figure 1). This is
the simplest type of SQL-based Transaction
Recovery. It involves generating UNDO SQL
statements to reverse the effect of the
transactions in error. To accomplish this

transformation you will need a solution that
understands the database log format and can
create the SQL needed to undo the data
modifications. With transaction recovery, the
database log is read for the transaction in
question, and the effects of the transaction are
reversed. In SQL parlance this means:

INSERT statements are converted to
DELETE statements
DELETE statements are converted to
INSERT statements
UPDATE statements are converted to modify
the data to its state prior to the original
UPDATE

Figure 1. UNDO Transaction Recovery

In the case depicted in Figure 1, UNDO SQL
statements are generated for the "bad
transaction" and then applied. Note that in the
case of UNDO Transaction Recovery, the portion
of the database that does not need to be
recovered remains undisturbed. When undoing
erroneous transactions, recovery can be done
online without suffering an outage of the
application or the database. However, the
potential for anomalies causing failures in the
UNDO is certainly a consideration. You must

http://www.mullinsconsulting.com/images/Image1.gif

understand the data and the application
processes that access and modify the data
undergoing the transaction recovery. You will
need to analyze the effects of subsequent
modifications that were perhaps based on the
state of the data introduced by the "bad
transaction."

REDO Transaction Recovery

The REDO Transaction Recovery strategy is a
combination of the first two recovery techniques
we have discussed—but with a twist (refer to
Figure 2).

Figure 2. REDO Transaction Recovery

Instead of generating SQL for the bad transaction
that we want to eliminate, we generate the SQL
for the transactions we want to save. Then we do
a standard point in time recovery eliminating all
the transactions since the recovery point. Finally
we re-apply the good transactions captured in the
first step.

Unlike the UNDO process which creates SQL
statements that are designed to back out all of
the problem transactions, the REDO process
creates SQL statements that are designed to
reapply only the valid transactions from a
consistent point of recovery to the current time.
Since the REDO process does not generate SQL
for the problem transactions, performing a
recovery and then executing the REDO SQL can
restore the object to a current state that does not
include the problem transactions.

To generate the redo SQL statements, you will
once again need a solution that understands the
database log format and can create the SQL
needed to redo the data modifications.

When redoing transactions in an environment
where availability is crucial, a PIT recovery can
be done and then the application and database

can brought online. The subsequent redoing of
the valid transactions to complete the recovery
then could be done with the data online, thereby
reducing application downtime.

Choosing the Optimum Recovery Strategy

So, what is the best recovery strategy? Of
course, as with most database-related questions,
the answer is: it depends. While transaction
recovery may seem like the answer to all your
application recovery problems, there are a
number of cases where it may neither be possible
nor advisable. In determining when to choose
transaction recovery, you must consider several
questions:

1. Transaction Identification. Can all the
problem transactions be identified? You must
be able to actually identify the transactions
that will be removed from the database. Can
all the work that was originally done be
located and redone?

2. Data Integrity. Has anyone else updated the
rows since the problem occurred? If they

have, can you still proceed? Is all the data
required still available? Recovering after a
REORG, LOAD, or mass DELETE may
require the use of image copies or the table
space may need to be undamaged. Will any
other data be lost? If so, can the data lost be
identified in some fashion?

3. Availability. How fast can the application
become available again? Can you afford to
go offline?

These questions actually boil down to a matter of
cost. The ultimate transaction recovery solution
should analyze your environment and the
transaction(s) needing to be recovered, and
recommend which type of transaction recovery to
perform.

Transaction Recovery Solutions

In order to avoid the high cost in manpower, time,
and machine resources of a manual transaction
recovery process, a robust transaction recovery
solution is needed. The first requirement is the
ability to read and analyze log data to:

provide detailed diagnostic information about
the selected transactions
identify where recovery should begin
find all bad transactions
store information for analysis
generate UNDO and/or REDO SQL for the
different types of transaction recoveries
provide a high speed capability for applying
the SQL statements during the UNDO and/or
REDO processing

The transaction recovery solution should address
all of the problems associated with quickly
analyzing problem transactions, determining the
scope of the recovery, getting information to
determine the best recovery method, and
managing recovery resources that result in
optimal recovery performance. Additionally, your
solution should produce a work estimate analysis
to provide the information needed to choose the
optimal recovery solution. This analysis should be
based on the relative cost of each option: PIT,
UNDO, or REDO.

Although several products could be used to
provide a transaction recovery solution, an
integrated solution is key to providing a tool that

makes transaction recovery an option that can be
chosen with confidence.

Summary

In summary, transaction recovery has become a
critical need in any complete recovery toolbox.
The transaction recovery solution chosen must
provide:

Powerful diagnostic features for problem
identification
Automated assistance in choosing optimal
recovery method
Features that provide speed, manageability,
and accuracy

And with a transaction recovery solution in your
arsenal, you just might be able to deliver the
availability required to help transform your
company into an e-business.

From Database Trends, February 2000.

© 2000, 1999 Craig S. Mullins, All rights reserved.
Home.

http://www.databasetrends.com/
http://www.craigsmullins.com/

