
 Craig S. Mullins
 Database Performance Management

Return to Home Page

June 2004

 Using Real Time Statistics (RTS)

By Craig S. Mullins

This article is adapted from the latest version of
Craig’s book, DB2 Developer’s Guide (5th edition).

To maintain efficient production DB2-based
systems, you must periodically monitor the DB2
objects that make up those systems. This type of
monitoring is an essential component of post-
implementation duties because the production
environment is dynamic. Fluctuations in business
activity, changes in data access patterns, or lack of
attention to administrative needs can cause a
system to perform inadequately. An effective

http://www.craigsmullins.com/
http://www.amazon.com/exec/obidos/ASIN/0672326132/mullinassoci-20?creative=327641&camp=14573&link_code=as1

strategy for monitoring DB2 objects in the
production environment will catch and forestall
problems before they affect performance.

One type of DB2 database object monitoring is to
query the DB2 Catalog tables. However, a new
feature of DB2 delivers real time statistics providing
up-to-date information about DB2 database
objects.

Autonomic Statistics

Real Time Statistics (RTS) is the first step in IBM’s
grand plans to automate parts of DB2 database
administration. Introduced after the general
availability of Version 7, but before Version 8, RTS
provides functionality that maintains statistics about
DB2 databases “on the fly,” without having to run a
utility program.

Prior to the introduction of RTS, the only way to
gather statistics about DB2 database structures
was by running the RUNSTATS utility. RUNSTATS
collects statistical information about DB2 database
objects and stores this data in the DB2 Catalog.
RTS, on the other hand, runs in the background
and automatically updates statistics in two special
tables as the data in DB2 databases is modified.

Where RUNSTATS is a hands-on administrative
process, RTS is hands-off.

Real Time Statistics was announced
with APARs PQ48447, PQ48448,
PQ46859, and PQ56256.

The RTS Tables

Although DB2 is always collecting RTS data,
nothing is externalized until you set up the RTS
database and tables to store the real time statistics.
The RTS database is named DSNRTSDB and
there is one table space (DSNRTSTS) with two
tables:

SYSIBM.TABLESPACESTATS:--Contains statistics
on table spaces and table space partitions

SYSIBM.INDEXSPACESTATS:--Contains statistics
on index spaces and index space partitions

The columns in the
SYSIBM.TABLESPACESTATS table are as
follows:

Column

DBNAME

NAME

PARTITION

DBID

PSID

UPDATESTATSTIME

TOTALROWS

NACTIVE

SPACE

EXTENTS

Description

Database name

Table space name

The data set number
within the table space. For
partitioned table spaces,
contains the partition
number for a single
partition. For non-
partitioned table spaces,
contains 0.

Internal database
identifier.

Internal page set identifier
(for the table space)

The timestamp when this
statistics row was inserted
or last updated.

The total number of rows
or LOBs in the table
space or partition.
Indicates the number of
rows in all tables for multi-
table table spaces.

LOADRLASTTIME

REORGINSERTS

REORGDELETES

REORGUPDATES

REORGDISORGLOB

REORGUNCLUSTINS

The number of active
pages in the table space
or partition. Indicates the
total number of
preformatted pages in all
data sets for multi-piece
table spaces.

The amount of space (in
kilobytes) that is allocated
to the table space or
partition. Indicates the
amount of space in all
data sets for multi-piece
linear page sets.

The number of extents
used by the table space or
partition. Indicates the
number of extents for the
last data set for multi-
piece table spaces. For a
data set that is striped
across multiple volumes,
the value is the number of
logical extents.

The timestamp when the
last LOAD REPLACE was
run for the table space or
partition.

REORGMASSDELETE

REORGNEARINDREF

REORGFARINDREF

STATSLASTTIME

STATSINSERTS
STATSDELETES
STATSUPDATES

The number of records or
LOBs that have been
inserted since the last
REORG or LOAD
REPLACE was run on the
table space or partition.

The number of records or
LOBs that have been
deleted since the last
REORG or LOAD
REPLACE on the table
space or partition.

The number of rows that
have been updated since
the last REORG or LOAD
REPLACE was run on the
table space or partition.
Does not include LOB
updates because they are
implemented as deletions
followed by insertions.

The number of LOBs that
were inserted since the
last REORG or LOAD
REPLACE that are not
perfectly chunked. A LOB
is perfectly chunked if the
allocated pages are in the

STATSMASSDELETE

COPYLASTTIME

COPYUPDATEDPAGES

COPYCHANGES

COPYUPDATELRSN

COPYUPDATETIME

minimum number of
chunks.

The number of records
that were inserted since
the last REORG or LOAD
REPLACE that are not
well-clustered with respect
to the clustering index. A
record is well-clustered if
the record is inserted into
a page that is within 16
pages of the ideal
candidate page.

The number of mass
deletes from a segmented
or LOB table space, or the
number of dropped tables
from a segmented table
space, since the last
REORG or LOAD
REPLACE was run.

The number of overflow
records created and
relocated near the pointer
record since the last
REORG or LOAD
REPLACE was run. For
non-segmented table
spaces, a page is near the

present page if the two
page numbers differ by 16
or less. For segmented
table spaces, a page is
near the present page if
the two page numbers
differ by SEGSIZE*2 or
less.

The number of overflow
records created and
relocated far from the
pointer record since the
last REORG or LOAD
REPLACE was run. For
non-segmented table
spaces, a page is far the
present page if the two
page numbers differ by
more than 16. For
segmented table spaces,
a page is far from the
present page if the two
page numbers differ by
more than SEGSIZE*2.

The timestamp when
RUNSTATS was last run
on this table space or
partition.

The number of records or
LOBs that have been
inserted/deleted/updated
since the last RUNSTATS
was executed on this
table space or partition.

The number of mass
deletes from a segmented
or LOB table space, or the
number of dropped tables
from a segmented table
space, since the last
RUNSTATS was run.

The timestamp of the last
full or incremental image
copy on the table space or
partition.

The number of distinct
pages that have been
updated since the last
COPY was run.

The number of INSERT,
UPDATE, and DELETE
operations since the last
COPY was run.

The LRSN or RBA of the
first update after the last

COPY was run.

Specifies the timestamp of
the first UPDATE made
after the last COPY was
run.

And the columns in the
SYSIBM.INDEXSPACESTATS table are as
follows:

Column

DBNAME

NAME

PARTITION

DBID

ISOBID

PSID

Description

Database name

Index space name

The data set number within
the index space. For
partitioned table spaces,
contains the partition
number for a single
partition. For non-partitioned
table spaces, contains 0.

Internal database identifier.

Internal identifier of the
index space page set
descriptor

UPDATESTATSTIME

TOTALENTRIES

NLEVELS

NACTIVE

SPACE

EXTENTS

LOADRLASTTIME

REBUILDLASTTIME

REORGLASTTIME

Internal page set identifier
(for the table space holding
the table on which this index
was created).

The timestamp when this
statistics row was inserted
or last updated.

The number of entries,
including duplicates, in the
index space or partition.

The number of levels in the
index
tree.

The number of active pages
in the index space or
partition.

The amount of space (in
kilobytes) that is allocated to
the index space or partition.
Indicates the amount of
space in all data sets for
multi-piece linear page sets.

The number of extents used
by the index space or
partition. Indicates the
number of extents for the

REORGINSERTS

REORGDELETES

REORGAPPENDINSERT

REORGPSEUDODELETES

REORGMASSDELETE

REORGLEAFNEAR

last data set for multi-piece
table spaces. For a data set
that is striped across
multiple volumes, the value
is the number of logical
extents.

The timestamp when the
last LOAD REPLACE was
run for the table space or
partition.

Timestamp of the last
REBUILD INDEX on the
index space or partition.

Timestamp of the last
REORG INDEX on the
index space or partition.

The number of index entries
that have been inserted
since the last REORG,
REBUILD INDEX or LOAD
REPLACE on the index
space or partition.

The number of index entries
that have been deleted
since the last REORG,
REBUILD INDEX, or LOAD

REORGLEAFFAR

REORGNUMLEVELS

STATSLASTTIME

STATSINSERTS
STATSDELETES

STATSMASSDELETE

COPYLASTTIME

REPLACE on the index
space or partition.

The number of index entries
that have been inserted
since the last REORG,
REBUILD INDEX or LOAD
REPLACE on the index
space or partition that have
a key value that is greater
than the maximum key
value in the index or
partition.

The number of index entries
that have been pseudo-
deleted since the last
REORG, REBUILD INDEX,
or LOAD REPLACE on the
index space or partition.

The number of times that an
index or index space
partition was mass deleted
since the last REORG,
REBUILD INDEX, or LOAD
REPLACE.

The number of index page
splits that occurred since
the last REORG, REBUILD
INDEX, or LOAD REPLACE

COPYUPDATEDPAGES

COPYCHANGES

COPYUPDATELRSN

COPYUPDATETIME

in which the higher part of
the split page was near the
location of the original page.
The higher part is near the
original page if the two page
numbers differ by 16 or less.

The number of index page
splits that occurred since
the last REORG, REBUILD
INDEX, or LOAD REPLACE
in which the higher part of
the split page was far from
the location of the original
page. The higher part is far
from the original page if the
two page numbers differ by
more than 16.

The number of levels in the
index tree that were added
or removed since the last
REORG, REBUILD INDEX,
or LOAD REPLACE.

The timestamp when
RUNSTATS was last run on
this table space or partition.

The number of records or
LOBs that have been
inserted/deleted since the
last RUNSTATS was
executed on this index
space or partition.

The number of times that
the index or index space
partition was mass deleted
since the last RUNSTATS
was run.

The timestamp of the last
full image copy on the index
space or partition.

The number of distinct
pages that have been
updated since the last
COPY was run.

The number of INSERT and
DELETE operations since
the last COPY was run.

The LRSN or RBA of the
first update after the last
COPY was run.

Specifies the timestamp of
the first UPDATE made after

the last COPY was run.

Each table has a unique index defined on it. Both
are defined on the DBID, PSID, and PARTITION
columns. The indexes names are:

SYSIBM.TABLESPACESTATS_IX

SYSIBM.INDEXSPACESTATS_IX

When are Real Time Stats Externalized?

As soon as RTS is applied (by running the proper
version or maintenance level of DB2), DB2 begins
to gather real time statistics. However, the RTS
tables must exist in order for DB2 to externalize the
real time statistics that it gathers.

Once the RTS tables have been created and
started, DB2 externalizes real-time statistics to the
tables at the following times:

 When the RTS database is stopped, DB2
first externalizes all RTS values from
memory into the RTS tables before

stopping the database.

 When an individual RTS table space is
stopped, DB2 first externalizes all RTS
values for that particular table space from
memory into the RTS tables before
stopping the database. Keep in mind,
though, that the default installation uses
only a single table space to store both
RTS tables.

 When you issue -STOP DB2
MODE(QUIESCE), DB2 first externalizes
all RTS values. Of course, if you stop
using MODE(FORCE) no RTS values are
externalized; instead, they are lost when
DB2 comes down.

 As specified by the DSNZPARM
STATSINT value. The default is every 30
minutes.

 During REORG, REBUILD INDEX,
COPY, and LOAD REPLACE utility

operations DB2 externalizes the
appropriate RTS values impacted by
running that utility.

RTS Accuracy

In certain situations, the RTS values may not be
100% accurate. Situations that can cause the real
time statistics to be off include:

 Sometimes a restarted utility can cause
the RTS values to be wrong

 Utility operations that leave indexes in a
restrictive state, such as RECOVER
pending (RECP) will cause stats to be
inaccurate.

 A DB2 subsystem failure

 A notify failure in a data sharing
environment

To fix RTS statistics that are inaccurate, run a
REORG, RUNSTATS, or COPY on the objects for

which that stats are suspect. Furthermore, if you
are using DB2 utilities from a third party vendor
other than IBM, be sure that those utilities work
with RTS. The third party utilities should be able
both to reset the RTS values and use the RTS stats
for recommending when to run utilities.

DSNACCOR: The RTS Stored Procedure

IBM supplies a sample stored procedure called
DSNACCOR that can be used to query the RTS
tables and make recommendations based on the
statistics. You can use DSNACCOR to recommend
when to run a REORG, take an image copy, or run
RUNSTATS. Additionally, DSNACCOR can report
on the data set extents of table spaces and index
spaces as well as on objects in a restricted state.

You can specify parameters to indicate to
DSNACCOR which table spaces and indexes to
analyze, or just run it without parameters to
evaluates all table spaces and index spaces in the
subsystem.

Keep in mind, though, that if the RTS values are
inaccurate, the recommendations made by
DSNACCOR will not be correct. Also, DSNACCOR
makes recommendations based on general
formulas requiring user input about your

maintenance policies. These recommendations
might not be accurate for every installation or
subsystem.

You should consider using DSNACCOR in
conjunction with DB2 Control Center. Control
Center provides a nice GUI interface to the
parameters of DSNACCOR making it easier to use
than directly calling the procedure would be.

Using the Real Time Statistics

The following RTS guidelines and queries can be
used against to help you identify maintenance and
administration that needs to be carried out for
database objects in your DB2 subsystems.

Checking for Activity

Because real time statistics are updated in an
ongoing manner as DB2 operates, you can use
them to see if any activity has occurred during a
specific timeframe. To determine whether any
activity has happened in the past several days for a
particular table space or index, use the
UPDATESTATSTIME column. Here is an example
checking whether any activity has occurred in the
past ten days for a table space (just supply the
table space name):

SELECT DBNAME, NAME, PARTITION,
 UPDATESTATSTIME
FROM SYSIBM.TABLESPACESTATS
WHERE (JULIAN_DAY(CURRENT DATE) -
 JULIAN_DAY(UPDATESTATSTIME))
<= 10
AND NAME = ?;

Basic Table Space Information

The RTS tables contain some good basic
information about table spaces. The following
query can be run to report on the number of rows,
active pages, space used, number of extents, and
when the COPY, REORG, LOAD REPLACE, and
RUNSTATS were last run:

SELECT DBNAME, NAME, PARTITION,
TOTALROWS,
 NACTIVE, SPACE, EXTENTS,
 UPDATESTATSTIME,
STATSLASTTIME,
 LOADRLASTTIME, REORGLASTTIME,
 COPYLASTTIME
FROM SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

You can add a WHERE clause to this query to limit
the output to only a certain database or for specific

table spaces.

Pay particular attention to the timestamps
indicating the last time that COPY, REORG, and
RUNSTATS were run. If the date is sufficiently old,
consider further investigating whether you should
take an image copy, reorganize the table space, or
run RUNSTATS.

Keep in mind though, that the span of time
between utility runs is not the only indicator for
when to copy, reorganize, or capture statistics. For
example, RUNSTATS may need to be run only
once on static data; similar caveats apply to COPY
and REORG when data does not change.

Reorganizing Table Spaces

Statistics that can help determine when to
reorganize a table space include: space allocated,
extents, number of INSERTs, UPDATEs, and
DELETEs since the last REORG or LOAD
REPLACE, number of unclustered INSERTs,
number of disorganized LOBs, and number of near
and far indirect references created since the last
REORG.

SELECT DBNAME, NAME, PARTITION,
SPACE,

 EXTENTS, REORGLASTTIME,
REORGINSERTS,
 REORGDELETES, REORGUPDATES,

REORGINSERTS+REORGDELETES+REORGUPDATES
 AS TOTAL_CHANGES,
 REORGDISORGLOB,
REORGUNCLUSTINS,
 REORGMASSDELETE,
REORGNEARINDREF,
 REORGFARINDREF
FROM SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

You might want to add a WHERE clause that limits
the table spaces returned to just those that exceed
a particular limit. For example:

Specify Description

WHERE EXTENTS > 20 Table spaces
having more
 than 20
extents

WHERE TOT_CHANGES > 100000 Table spaces
with more
 than 100K
changes

WHERE REORGFARINDREF > 50 Table spaces
with more than
50 far indirect
references

Another way to get more creative with your RTS
queries is to build formulas into them to retrieve
only those table spaces that need to be
reorganized. For example, the following query will
return only those table spaces having more than
10% of their rows as near or far indirect references:

SELECT DBNAME, NAME, PARTITION,
SPACE,
 EXTENTS
FROM SYSIBM.TABLESPACESTATS
WHERE (((REORGNEARINDREF +
REORGFARINDREF)
 *100
)/TOTALROWS
) > 10
ORDER BY DBNAME, NAME, PARTITION;

Of course, you can change the percentage as you
wish. After running the query you have a list of
table spaces meeting your criteria for
reorganization.

Examining the Impact of a Program

You can use the TOTALROWS column of
SYSIBM.TABLESPACESTATS to determine how
many rows were impacted by a particular program
or process. Simply check TOTALROWS for the
table space both before and after the process; the
difference between the values is the number of
rows impacted.

When to Run RUNSTATS for a Table Space

There are also statistics to help in determining
when RUNSTATS should be executed. Run the
following query to show the number of INSERTs,
UPDATEs, and DELETEs since the last
RUNSTATS execution:

SELECT DBNAME, NAME, PARTITION,
 STATSLASTTIME, STATSINSERTS,
 STATSDELETES, STATSUPDATES,

STATSINSERTS+STATSDELETES+STATSUPDATES
 AS TOTAL_CHANGES,
 STATSMASSDELETE
FROM SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

When to Take an Image Copy for a Table Space

You can issue the following query to report on
statistics that will help you to determine whether a
COPY is required:

SELECT DBNAME, NAME, PARTITION,
COPYLASTTIME,
 COPYUPDATEDPAGES,
COPYCHANGES,
 COPYUPDATELRSN,
COPYUPDATETIME
FROM SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

Basically, as the number of distinct updated pages
and changes since the last COPY execution
increase, the need to take an image copy
increases. A good rule of thumb to follow is when
the percentage of updated pages since the last
COPY is more than 25% of the active pages, then
it is time to COPY the table space. You can add the
following WHERE clause to the above query to limit
the output to only these table spaces:

WHERE ((COPYUPDATEDPAGES*100) /
NACTIVE) > 25

Basic Index Space Information

Do not forget that there are also RTS statistics
gathered on indexes. The following query can be
run to report on the number of rows, active pages,
space used, number of extents, and when the
COPY, REORG, LOAD REPLACE, and
RUNSTATS were last run:

SELECT DBNAME, INDEXSPACE,
PARTITION,
 TOTALENTRIES, NLEVELS,
NACTIVE,
 SPACE, EXTENTS,
UPDATESTATSTIME,
 LOADRLASTTIME,
REBUILDLASTTIME,
 REORGLASTTIME, STATSLASTTIME,
 COPYLASTTIME
FROM SYSIBM.INDEXPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

Reorganizing Index Spaces

Just like the table space stats, there are index
space statistics that can be used to determine
when to reorganize indexes. These statistics
include the last time REBUILD, REORG or LOAD
REPLACE occurred, as well as statistics showing
the number of INSERTs and DELETEs since the
last REORG or REBUILD. And RTS does not

skimp in the details. You get both real and pseudo
DELETEs, as well as both singleton and mass
DELETE information. RTS also tracks both the
number of index levels and index page split
information resulting in near and far indirect
references since the last REORG, REBUILD
INDEX, or LOAD REPLACE. The following query
can be used to return this information:

SELECT DBNAME, NAME, PARTITION,
 REORGLASTTIME, LOADRLASTTIME,
 REBUILDLASTTIME,
TOTALENTRIES,
 NACTIVE, SPACE, EXTENTS,
NLEVELS,
 REORGNUMLEVELS, REORGINSERTS,
 REORGAPPENDINSERT,
REORGDELETES,
 REORGPSEUDODELETES,
REORGMASSDELETE,
 REORGLEAFNAR, REORGLEAFFAR
FROM SYSIBM.INDEXPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

These statistics can be examined after running jobs
or processes that cause heavy data modification.

Pay particular attention to the
REORGAPPENDINSERT column. It contains the

number of inserts into an index since the last
REORG for which the index key was higher than
any existing key value. If this column consistently
grows, you have identified an object where data is
inserted using an ascending key sequence. Think
about lowering the free space for such objects
because the free space is wasted space if inserts
are always done in ascending key sequence.

When to Run RUNSTATS for an Index Space

RTS provides index space statistics to help
determine when to run RUNSTATS similar to the
table space statistics. Run the following query to
show the number of INSERTs, UPDATEs, and
DELETEs since the last RUNSTATS execution:

SELECT DBNAME, NAME, PARTITION,
 STATSLASTTIME, STATSINSERTS,
 STATSDELETES, STATSMASSDELETE
FROM SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

Summary

Real time statistics can be used to augment your
DB2 object monitoring process. Be sure to take
advantage of the continuously updated RTS values

to improve the administration and performance of
your DB2 databases.

From DB2 Update, June 2004.

© 2004 Craig S. Mullins, All rights reserved.
Home.

http://www.craigsmullins.com/

