
 Mullins Consulting, Inc.
               
Database
Performance Management

Return to Home Page
February 2000
 

DB2 and the Procedural DBA

 
By Craig S. Mullins

 
In 1995 I coined the term Procedural DBA to
describe a new type of database administration
required by modern database
management. The
concept is a simple one: a new type of DBA is
required to manage
the procedural logic that is
increasingly being stored in relational database
management systems.

Initially, the sole purpose of a DBMS was to
store,
manage, and access data. Over time,
database management systems have evolved
by
integrating procedural logic in the form of
complex triggers, stored procedures,
and user-
defined functions. This code is tightly coupled to

http://www.craigsmullins.com/


the DBMS. As these
features are exploited,
management tasks such as administration,
design, and
tuning typically are assigned to the
current DBA staff by default. But this is
not
always the best approach. What is required is
an expansion of the role of
database
administration.

The Classic Role of the DBA

When a DBMS is implemented appropriately, its
use spans
the enterprise. Multiple applications,
consisting of multiple programs, access
and
manipulate data stored in databases that are
managed by the DBMS. A scenario
such as this
is good because it reduces data redundancy
and increases data
integrity. However, this same
situation also effectively places the DBA on call
for all of the applications of the organization. If
the database portion of any
application fails, the
DBA must be able to fix the problem bringing the
database
back on-line so the application can
execute.

To make matters more difficult, the role of the
DBA has
expanded over the years. In the pre-
relational days, both database design and
data
access was complex. Programmers were



required to explicitly code program
logic to
navigate through the database structure to
access data. Usually the
pre-relational DBA was
assigned the task of designing the hierarchic or
network
database design. Almost always, this
process consisted of both logical and
physical
database design, although it was not always
recognized as such at the
time. Once the
database was planned, designed, and
generated, and the DBA
created backup and
recovery jobs, little more than space
management and
reorganizations were
required. Of course, this sounds easier than it
actually
was. Pre-relational DBMS products
(such as IMS) require a complex series of
utility
programs to be run in order to perform backup,
recovery, and
reorganization, consuming a large
amount of time and effort.

Today, of course, DBAs still design databases,
and perform
tasks such as backup, recovery,
and reorganization. But increasingly databases
are generated from logical data models created
by data administration staffs
using data
modeling and database design tools.
Additionally, the utilities for
performing backup,
recovery, and reorganization are simpler to build
in the
relational world.



Although the up-front effort required to design a
relational database is reduced, it is not
eliminated. Relational design still
requires
physical implementation decisions such as table
design, partitioning,
indexing, normalization and
denormalization. But instead of just performing
physical implementation and administration,
DBAs are more intimately involved
with
procedural data access too. The nature of
relational technology requires
additional
involvement during the design of data access
routines. This is true
because relational
optimizer technology embedded into the
RDBMS is used to
choose the best access
paths to the data. The optimization choices must
be
reviewed by the DBA. Therefore, application
program and SQL design reviews are a
vital
component of the DBA's job.

Furthermore, DBAs perform most monitoring
and tuning
responsibilities. DBAs use tools like
EXPLAIN, performance monitors, and SQL
analysis tools to proactively administer RDBMS
applications.

Oftentimes, DBAs are not adequately trained in
these
areas. It is a distinctly different skill to
program than it is to create
well-designed



relational databases. Yet, DBAs quickly learn
that they have to be
able to understand
application programming techniques to succeed.

DBMS-Coupled Application Logic

Although DB2 was one of the last major RDBMS
products to
gain a full complement of tools for
storing procedural logic in the database,
its
current support as of Version 6 is very robust.
DB2 provides support for
stored procedures,
triggers, user-defined functions, a procedural
version of SQL
based on SQL/PSM, and user-
defined data types.

A procedural SQL language adds features such
as looping,
branching, and flow of control
statements to make SQL a more functionally
complete and useful programming language.
Using DB2’s version of SQL/PSM,
developers
can create complex functional stored
procedures and triggers without
the need to
code a 3GL program.

Let’s define the different types of logic that can
be
stored, accessed, and managed in DB2
databases.



Stored procedures are
procedural logic that is
maintained, administered, and executed through
the
RDBMS. The primary reason for using
stored procedures is to move application
code
off of the client and on to the database server.
This can result in reduced
overhead because
one client can invoke a stored procedure
consisting of multiple
SQL statements. Invoking
one procedure to execute multiple SQL
statements is
preferable to the client executing
multiple SQL statements directly because it
minimizes network traffic thereby enhancing
overall application performance. A
stored
procedure is not "physically" associated with any
other object
in the database. It can access
and/or modify data in one or more tables.
Basically, stored procedures can be thought of
as "programs" that
"live" in the RDBMS.

Triggers are event-driven
specialized
procedures that are stored in, and executed by,
the RDBMS. Each
trigger is attached to a single,
specified table. Triggers can be thought of as
an
advanced form of "rule" or "constraint" written
using
procedural logic. A trigger can not be
directly called or executed; it is
automatically
executed (or "fired") by the RDBMS as the result
of an
action—usually a data modification to the



associated table. Once a trigger is
created it is
always executed when its "firing" event occurs
(update,
insert, delete, etc.).

User-defined functions, or UDFs,
provide
developers with the ability to extend the SQL
language. Once coded, a
UDF can be specified
wherever a built-in SQL function can be
specified. In
general, DB2 functions (both built-in
and user-defined) can be used any place an
expression can be used (with some exceptions).
Functions are called by
specifying the function
name and any required operands.

You can think of stored procedures and triggers
and
user-defined functions like other database
objects such as tables, views, and
indexes,
because are controlled by and managed within
DB2. These objects are
often collectively
referred to as server code objects, or SCOs,
because
they are actually program code that is
managed by a database server as a
database
object.

Why Use Server Code Objects?

The predominant reason for using SCOs is to
promote code
reusability. Instead of replicating
code on multiple servers or within multiple



application programs, SCOs enable code to
reside in a single place: the database
server.
SCOs can be automatically executed based
upon context and activity or
can be called from
multiple client programs as required. This is
preferable to
cannibalizing sections of program
code for each new application that must be
developed. SCOs enable logic to be invoked
from multiple processes instead of
being re-
coded into each new process every time the
code is required.

An additional benefit of SCOs is increased
consistency. If
every user and every database
activity (with the same requirements) is assured
of using the SCO instead of multiple, replicated
code segments, then the
organization can be
assured that everyone is running the same,
consistent code.
If each individual user deployed
his or her own individual and separate code, no
assurance could be given that the same
business logic was being used by
everyone. In
fact, it is almost a certainty that inconsistencies
would occur.

Additionally, SCOs are useful for reducing the
overall
code maintenance effort. Because SCOs
exist in a single place (the RDBMS),
changes



can be made quickly without requiring
propagation of the change to
multiple
workstations.

Finally, SCOs can be coded to support database
integrity
constraints, implement security
requirements, reduce code maintenance efforts,
support remote data access, and, as mentioned
earlier, enhance performance. Of
course, in
order to achieve these gains SCOs need to be
effectively managed and
administered. Hence
the need for a Procedural DBA.

The Procedural DBA

Once server code objects are coded and made
available to
the RDBMS, applications and
developers will begin to rely upon them.
Although
the functionality provided by SCOs is
unquestionably useful and desirable, DBAs
are
presented with a major dilemma. Now that
procedural logic is being stored in
DB2, DBAs
must grapple with the issues of quality,
maintainability, and
availability. How and when
will these objects be tested? The impact of a
failure
is enterprise-wide, not relegated to a
single application. This increases the
visibility
and criticality of these objects. Who is



responsible if they fail?
The answer should be—
a DBA. But testing and debugging of code is not
a typical
role for DBAs.

With the advent of server code objects, the role
of the
DBA is expanding to encompass too
many responsibilities for a single person to
perform the job capably. The solution is to split
the job of DBA into two
separate parts based
upon the type of database object being
supported: data
objects or server code objects.

Administering and managing data objects is
more in line
with the traditional role of the DBA,
and is well-defined. But DDL and database
utility
experts can not be expected to debug
procedures and triggers written in
sometimes
very complex SQL and application code.
Debugging a procedure is a very
different task
than creating a database schema and ensuring
that there are no
syntax errors. Furthermore,
even though many organizations rely upon
DBAs to be
the SQL experts in the company,
often times they are not--at least not DML
experts. Simply because the DBA knows the
best way to create a physical database
design
and DDL, does not mean he will know the best
way to access that data. It
is not uncommon for



a DBA to come from the ranks of network and/or
system
administration, and SQL is foreign to
many system administrators.

The role of administering the procedural logic in
a RDBMS
should fall upon someone skilled in
that discipline. A new type of DBA must be
defined to accommodate server code object and
procedural logic administration.
This new role
can be defined as a procedural DBA.

The Procedural DBA should be responsible for
database management activities that
require
programming and similar activities. This includes
primary responsibility
for server code objects.
Whether SCOs are actually programmed by the
Procedural
DBA may differ from shop-to-shop.
This will depend on the size of the shop, the
number of DBAs available, and the scope of
server code object implementation.
Minimally,
the Procedural DBA should lead SCO code
reviews and perform SCO
administration.

Additionally, the Procedural DBA must be on-call
for SCO
failures. Consider the ramifications if
this were not the case. As part of a new
project,
Team A implements a new stored procedure to



obtain customer
information. The project is
completed and moved to production. Team B,
working
in a different department, decides to re-
use the customer information stored
procedure
in their new application. Team B completes its
project and moves it
into production. Three
weeks later, at 2:00 A.M., Team B’s application
fails
because of a failure in the shared stored
procedure. Who comes in to fix it?
Team A, the
team that coded the stored procedure but whose
application is
working? Or Team B, whose
application is down but has no one that
understands
the stored procedure?

Of course, the correct answer is the Procedural
DBA.

Additional issues arise as SCOs are
implemented. One such
example is the proper
maintenance of DB2 triggers once they have
been defined.
If multiple triggers are defined on
the same table for the same action, DB2 will
fire
the triggers in the order they were created. This
can have an impact on the
end result of a
transaction. 

Consider, for example, the following admittedly
contrived
scenario. Two update triggers exist on



TABLE1, namely TRIGGER1 and TRIGGER2.
TRIGGER1 adds the value 5 to COLX in
TABLE2; TRIGGER2 multiple the value of COLX
in TABLE2 by the value 3. If COLX is equal to 3,
after the two triggers fire,
COLX would be equal
to (3 + 5) * 3, or 24.

Now, consider what would happen if TRIGGER1
is modified
for some reason. The trigger is
dropped and recreated. Now, TRIGGER2 would
fire
first, followed by TRIGGER1. The following
example would have a different
result. If COLX
is equal to 3, after the two triggers fire, COLX
would be equal
to (3 * 3) + 5, or 14. The order in
which triggers fire is important, but the
only way
to control it is based on which trigger was
created first. This process
must be controlled by
someone who understands these nuances,
ideally a
Procedural DBA.

Other procedural administrative functions that
can be
allocated to the Procedural DBA include
application code reviews, access path
review
and analysis, SQL debugging, complex SQL
analysis, and re-writing queries
for optimal
execution. Off-loading these tasks to the
Procedural DBA will enable
the traditional, data-
oriented DBAs to concentrate on the actual



physical design
and implementation of
databases. This should result in much better
designed
databases… and much better
performing SQL.

The Procedural DBA should still report through
the same management unit as the
traditional
DBA and not through the application
programming staff. This enables
better skills
sharing between the two distinct DBA types.
There must be a high
degree of synergy
between the Procedural DBA and the
application programmer. The
typical job path for
the Procedural DBA should grow from the
programming ranks
because this is where the
coding skill-base exists.

The procedural DBA should still report through
the same
management unit as the traditional
DBA and not through the application
programming staff. This enables better skills
sharing between the two distinct
DBA types. Of
course, there will need to be a greater synergy
between the
procedural DBA and the application
programmer/analyst. In fact, the typical job
path
for the procedural DBA should come from the
application programming ranks
because this is
where the coding skill-base exists.



Synopsis

As you implement triggers, stored procedures,
and
user-defined functions to support business
rules in your applications, be aware
that
database administration becomes more
complex. The role of the DBA is
rapidly
expanding to the point where no single
professional can be reasonably
expected to be
an expert in all facets of the job. It is high time
that the job
is explicitly defined into manageable
components, starting with the Procedural
DBA.

From DB2 Update (Xephon), 
February 2000. 
 
© 2000 Craig S. Mullins, All rights reserved.
Home.   

http://www.craigsmullins.com/

