
 Mullins Consulting, Inc.
 Database Performance Management

Return to Home Page
February 2000

DB2 and the Procedural DBA

By Craig S. Mullins

In 1995 I coined the term Procedural DBA to
describe a new type of database administration
required by modern database management. The
concept is a simple one: a new type of DBA is
required to manage the procedural logic that is
increasingly being stored in relational database
management systems.

Initially, the sole purpose of a DBMS was to
store, manage, and access data. Over time,
database management systems have evolved
by integrating procedural logic in the form of
complex triggers, stored procedures, and user-
defined functions. This code is tightly coupled to

http://www.craigsmullins.com/

the DBMS. As these features are exploited,
management tasks such as administration,
design, and tuning typically are assigned to the
current DBA staff by default. But this is not
always the best approach. What is required is
an expansion of the role of database
administration.

The Classic Role of the DBA

When a DBMS is implemented appropriately, its
use spans the enterprise. Multiple applications,
consisting of multiple programs, access and
manipulate data stored in databases that are
managed by the DBMS. A scenario such as this
is good because it reduces data redundancy
and increases data integrity. However, this same
situation also effectively places the DBA on call
for all of the applications of the organization. If
the database portion of any application fails, the
DBA must be able to fix the problem bringing the
database back on-line so the application can
execute.

To make matters more difficult, the role of the
DBA has expanded over the years. In the pre-
relational days, both database design and data
access was complex. Programmers were

required to explicitly code program logic to
navigate through the database structure to
access data. Usually the pre-relational DBA was
assigned the task of designing the hierarchic or
network database design. Almost always, this
process consisted of both logical and physical
database design, although it was not always
recognized as such at the time. Once the
database was planned, designed, and
generated, and the DBA created backup and
recovery jobs, little more than space
management and reorganizations were
required. Of course, this sounds easier than it
actually was. Pre-relational DBMS products
(such as IMS) require a complex series of utility
programs to be run in order to perform backup,
recovery, and reorganization, consuming a large
amount of time and effort.

Today, of course, DBAs still design databases,
and perform tasks such as backup, recovery,
and reorganization. But increasingly databases
are generated from logical data models created
by data administration staffs using data
modeling and database design tools.
Additionally, the utilities for performing backup,
recovery, and reorganization are simpler to build
in the relational world.

Although the up-front effort required to design a
relational database is reduced, it is not
eliminated. Relational design still requires
physical implementation decisions such as table
design, partitioning, indexing, normalization and
denormalization. But instead of just performing
physical implementation and administration,
DBAs are more intimately involved with
procedural data access too. The nature of
relational technology requires additional
involvement during the design of data access
routines. This is true because relational
optimizer technology embedded into the
RDBMS is used to choose the best access
paths to the data. The optimization choices must
be reviewed by the DBA. Therefore, application
program and SQL design reviews are a vital
component of the DBA's job.

Furthermore, DBAs perform most monitoring
and tuning responsibilities. DBAs use tools like
EXPLAIN, performance monitors, and SQL
analysis tools to proactively administer RDBMS
applications.

Oftentimes, DBAs are not adequately trained in
these areas. It is a distinctly different skill to
program than it is to create well-designed

relational databases. Yet, DBAs quickly learn
that they have to be able to understand
application programming techniques to succeed.

DBMS-Coupled Application Logic

Although DB2 was one of the last major RDBMS
products to gain a full complement of tools for
storing procedural logic in the database, its
current support as of Version 6 is very robust.
DB2 provides support for stored procedures,
triggers, user-defined functions, a procedural
version of SQL based on SQL/PSM, and user-
defined data types.

A procedural SQL language adds features such
as looping, branching, and flow of control
statements to make SQL a more functionally
complete and useful programming language.
Using DB2’s version of SQL/PSM, developers
can create complex functional stored
procedures and triggers without the need to
code a 3GL program.

Let’s define the different types of logic that can
be stored, accessed, and managed in DB2
databases.

Stored procedures are procedural logic that is
maintained, administered, and executed through
the RDBMS. The primary reason for using
stored procedures is to move application code
off of the client and on to the database server.
This can result in reduced overhead because
one client can invoke a stored procedure
consisting of multiple SQL statements. Invoking
one procedure to execute multiple SQL
statements is preferable to the client executing
multiple SQL statements directly because it
minimizes network traffic thereby enhancing
overall application performance. A stored
procedure is not "physically" associated with any
other object in the database. It can access
and/or modify data in one or more tables.
Basically, stored procedures can be thought of
as "programs" that "live" in the RDBMS.

Triggers are event-driven specialized
procedures that are stored in, and executed by,
the RDBMS. Each trigger is attached to a single,
specified table. Triggers can be thought of as an
advanced form of "rule" or "constraint" written
using procedural logic. A trigger can not be
directly called or executed; it is automatically
executed (or "fired") by the RDBMS as the result
of an action—usually a data modification to the

associated table. Once a trigger is created it is
always executed when its "firing" event occurs
(update, insert, delete, etc.).

User-defined functions, or UDFs, provide
developers with the ability to extend the SQL
language. Once coded, a UDF can be specified
wherever a built-in SQL function can be
specified. In general, DB2 functions (both built-in
and user-defined) can be used any place an
expression can be used (with some exceptions).
Functions are called by specifying the function
name and any required operands.

You can think of stored procedures and triggers
and user-defined functions like other database
objects such as tables, views, and indexes,
because are controlled by and managed within
DB2. These objects are often collectively
referred to as server code objects, or SCOs,
because they are actually program code that is
managed by a database server as a database
object.

Why Use Server Code Objects?

The predominant reason for using SCOs is to
promote code reusability. Instead of replicating
code on multiple servers or within multiple

application programs, SCOs enable code to
reside in a single place: the database server.
SCOs can be automatically executed based
upon context and activity or can be called from
multiple client programs as required. This is
preferable to cannibalizing sections of program
code for each new application that must be
developed. SCOs enable logic to be invoked
from multiple processes instead of being re-
coded into each new process every time the
code is required.

An additional benefit of SCOs is increased
consistency. If every user and every database
activity (with the same requirements) is assured
of using the SCO instead of multiple, replicated
code segments, then the organization can be
assured that everyone is running the same,
consistent code. If each individual user deployed
his or her own individual and separate code, no
assurance could be given that the same
business logic was being used by everyone. In
fact, it is almost a certainty that inconsistencies
would occur.

Additionally, SCOs are useful for reducing the
overall code maintenance effort. Because SCOs
exist in a single place (the RDBMS), changes

can be made quickly without requiring
propagation of the change to multiple
workstations.

Finally, SCOs can be coded to support database
integrity constraints, implement security
requirements, reduce code maintenance efforts,
support remote data access, and, as mentioned
earlier, enhance performance. Of course, in
order to achieve these gains SCOs need to be
effectively managed and administered. Hence
the need for a Procedural DBA.

The Procedural DBA

Once server code objects are coded and made
available to the RDBMS, applications and
developers will begin to rely upon them.
Although the functionality provided by SCOs is
unquestionably useful and desirable, DBAs are
presented with a major dilemma. Now that
procedural logic is being stored in DB2, DBAs
must grapple with the issues of quality,
maintainability, and availability. How and when
will these objects be tested? The impact of a
failure is enterprise-wide, not relegated to a
single application. This increases the visibility
and criticality of these objects. Who is

responsible if they fail? The answer should be—
a DBA. But testing and debugging of code is not
a typical role for DBAs.

With the advent of server code objects, the role
of the DBA is expanding to encompass too
many responsibilities for a single person to
perform the job capably. The solution is to split
the job of DBA into two separate parts based
upon the type of database object being
supported: data objects or server code objects.

Administering and managing data objects is
more in line with the traditional role of the DBA,
and is well-defined. But DDL and database utility
experts can not be expected to debug
procedures and triggers written in sometimes
very complex SQL and application code.
Debugging a procedure is a very different task
than creating a database schema and ensuring
that there are no syntax errors. Furthermore,
even though many organizations rely upon
DBAs to be the SQL experts in the company,
often times they are not--at least not DML
experts. Simply because the DBA knows the
best way to create a physical database design
and DDL, does not mean he will know the best
way to access that data. It is not uncommon for

a DBA to come from the ranks of network and/or
system administration, and SQL is foreign to
many system administrators.

The role of administering the procedural logic in
a RDBMS should fall upon someone skilled in
that discipline. A new type of DBA must be
defined to accommodate server code object and
procedural logic administration. This new role
can be defined as a procedural DBA.

The Procedural DBA should be responsible for
database management activities that require
programming and similar activities. This includes
primary responsibility for server code objects.
Whether SCOs are actually programmed by the
Procedural DBA may differ from shop-to-shop.
This will depend on the size of the shop, the
number of DBAs available, and the scope of
server code object implementation. Minimally,
the Procedural DBA should lead SCO code
reviews and perform SCO administration.

Additionally, the Procedural DBA must be on-call
for SCO failures. Consider the ramifications if
this were not the case. As part of a new project,
Team A implements a new stored procedure to

obtain customer information. The project is
completed and moved to production. Team B,
working in a different department, decides to re-
use the customer information stored procedure
in their new application. Team B completes its
project and moves it into production. Three
weeks later, at 2:00 A.M., Team B’s application
fails because of a failure in the shared stored
procedure. Who comes in to fix it? Team A, the
team that coded the stored procedure but whose
application is working? Or Team B, whose
application is down but has no one that
understands the stored procedure?

Of course, the correct answer is the Procedural
DBA.

Additional issues arise as SCOs are
implemented. One such example is the proper
maintenance of DB2 triggers once they have
been defined. If multiple triggers are defined on
the same table for the same action, DB2 will fire
the triggers in the order they were created. This
can have an impact on the end result of a
transaction.

Consider, for example, the following admittedly
contrived scenario. Two update triggers exist on

TABLE1, namely TRIGGER1 and TRIGGER2.
TRIGGER1 adds the value 5 to COLX in
TABLE2; TRIGGER2 multiple the value of COLX
in TABLE2 by the value 3. If COLX is equal to 3,
after the two triggers fire, COLX would be equal
to (3 + 5) * 3, or 24.

Now, consider what would happen if TRIGGER1
is modified for some reason. The trigger is
dropped and recreated. Now, TRIGGER2 would
fire first, followed by TRIGGER1. The following
example would have a different result. If COLX
is equal to 3, after the two triggers fire, COLX
would be equal to (3 * 3) + 5, or 14. The order in
which triggers fire is important, but the only way
to control it is based on which trigger was
created first. This process must be controlled by
someone who understands these nuances,
ideally a Procedural DBA.

Other procedural administrative functions that
can be allocated to the Procedural DBA include
application code reviews, access path review
and analysis, SQL debugging, complex SQL
analysis, and re-writing queries for optimal
execution. Off-loading these tasks to the
Procedural DBA will enable the traditional, data-
oriented DBAs to concentrate on the actual

physical design and implementation of
databases. This should result in much better
designed databases… and much better
performing SQL.

The Procedural DBA should still report through
the same management unit as the traditional
DBA and not through the application
programming staff. This enables better skills
sharing between the two distinct DBA types.
There must be a high degree of synergy
between the Procedural DBA and the
application programmer. The typical job path for
the Procedural DBA should grow from the
programming ranks because this is where the
coding skill-base exists.

The procedural DBA should still report through
the same management unit as the traditional
DBA and not through the application
programming staff. This enables better skills
sharing between the two distinct DBA types. Of
course, there will need to be a greater synergy
between the procedural DBA and the application
programmer/analyst. In fact, the typical job path
for the procedural DBA should come from the
application programming ranks because this is
where the coding skill-base exists.

Synopsis

As you implement triggers, stored procedures,
and user-defined functions to support business
rules in your applications, be aware that
database administration becomes more
complex. The role of the DBA is rapidly
expanding to the point where no single
professional can be reasonably expected to be
an expert in all facets of the job. It is high time
that the job is explicitly defined into manageable
components, starting with the Procedural DBA.

From DB2 Update (Xephon), February 2000.

© 2000 Craig S. Mullins, All rights reserved.
Home.

http://www.craigsmullins.com/

