
 Craig S. Mullins
Return to Home Page

February 2004

Sequence Objects and Identity
Columns

By Craig S. Mullins

When designing DB2 databases a frequently
heard request is for a column that contains
sequentially generated numbers. For example,
each row has a counter associated with it.
When a new row is inserted, the counter
should be incremented by one for the new
row. This way, each new DB2 row has a unique
“row number” associated with it. Until recently
such a design was difficult to deliver.

http://www.craigsmullins.com/

Without sequence objects or identity columns
an application program can implement similar
functionality, but usually not in a manner that
performs adequately as database usage
scales. A common technique is to maintain a
one-row table that contains the sequence
number. Each transaction locks that table,
increments the number, and then commits
the change to unlock the table. In this scenario
only one transaction at a time can increment
the sequence number. A variation uses
something like this

SELECT MAX()+ 1
FROM ONEROW_TABLE
WITH RR;

The result is the next highest number to be
used. This value is used by the application and
ONEROW_TABLE must be updated with the
incremented value. Performance bottlenecks
will occur with this method when a lot of
concurrent usage is required.

But now DB2 offers two methods of
automatically generating sequential numbers
for a column:

· Identity columns, and;
· SEQUENCE objects.

Identity Columns

Identity columns were formally added to DB2
as of Version 7, but were actually available as
of the DB2 Version 6 refresh. The identity
property is applied to a DB2 column using the
IDENTITY parameter. A column thusly defined
will cause DB2 to automatically generate a
sequential value for that column when a row
is added to the table. For example, identity
columns might be used to generate primary
key values or a value that somewhat mimics
Oracle’s row number capability. Using identity
columns helps to avoid some of the
concurrency and performance problems that
can occur when application programs are
used to populate sequential values for a
“counter” column.

When inserting data into a table that uses an
identity column, the program or user will not
provide a value for the identity column.
Instead, DB2 automatically generates the
appropriate value to be inserted.

Only one identity column can be defined per
DB2 table. Additionally, the data type of the
column must be SMALLINT, INTEGER, or
DECIMAL with a zero scale, that is
DECIMAL(n,0). The data type also can be a
user-defined DISTINCT type based on one of
these numeric data types. The designer has
control over the starting point for the
generated sequential values, and the number
by which the count is incremented.

An example creating a table with an identity
column follows:

CREATE TABLE EXAMPLE
 (ID_COL INTEGER NOT NULL
 GENERATED ALWAYS AS
IDENTITY
 START WITH 100

 INCREMENT BY 10
 ...);

In this example, the identity column is named
ID_COL. The first value stored in the column
will be 100 and subsequent INSERTs will add
10 to the last value. So the identity column
values generated will be 100, 110, 120, 130,
and so on.

Note, too, that each identity column has a
property associated with it assigned using the
GENERATED parameter. This parameter
indicates how DB2 generates values for the
column. You must specify GENERATED if the
column is to be considered an identity column
or the data type of the column is a ROWID.
This means that DB2 must be permitted to
generate values for all identity columns. There
are two options for the GENERATED
parameter: ALWAYS and BY DEFAULT.

GENERATED ALWAYS indicates that DB2
will always generate a value for the
column when a row is inserted into the
table. You will usually specify ALWAYS for

your identity columns unless you are using
data propagation.

GENERATED BY DEFAULT indicates that
DB2 will generate a value for the column
when a row is inserted into the table
unless a value is specified. So, if you want
to be able to insert an explicit value into
an identity column you must specify
GENERATED BY DEFAULT.

Additionally, you can specify what to do when
the maximum value is hit. Specifying the
CYCLE keyword will cause DB2 to begin
generating values from the minimum value all
over again. Of course, this can cause duplicate
values to be generated and should only be
used when uniqueness is not a requirement.

Actually, the only way to ensure uniqueness of
your identity columns is to create a unique
index on the column. The IDENTITY property
alone will not guarantee uniqueness.

Sometimes it is necessary to retrieve the value
of an identity column immediately after it is
inserted. For example, if you are using identity
columns for primary key generation you may
need to retrieve the value to provide the
foreign key of a child table row that is to be
inserted after the primary key is generated.
DB2 provides the IDENTITY_VAL_LOCAL()
function that can be used to retrieve the value
of an identity column after insertion. For
example, you can run the following statement
immediately after the INSERT statement that
sets the identity value:

VALUES IDENTITY_VAL_LOCAL() INTO
:IVAR;

The host variable IVAR will contain the value of
the identity column.

Problems with Identity Columns

Identity columns can be useful, depending on
your specific needs, but the problems that
accompany identity column are numerous.
Some of these problems include:

· Handling the loading of data into a table
with an identity column defined as
GENERATED BY DEFAULT. The next
identity value stored by DB2 to be
assigned may not be the correct value
that should be generated. This can be
especially troublesome in a testing
environment.

· LOAD INTO PART x is not allowed if an
identity column is part of the partitioning
index.

· What about environments that require
regular loading and reloading (REPLACE)
for testing? The identity column will not
necessarily hold the same values for the
same rows from test to test.

· Prior to V8, it was not possible to change
the GENERATED parameter (such as
from GENERATED BY DEFAULT to
GENERATED ALWAYS).

· The IDENTITY_VAL_LOCAL() function
returns the value used for the last insert
to the identity column. But it only works
after a singleton INSERT. This means you
cannot use INSERT INTO SELECT FROM
or LOAD, if you need to rely on this
function.

· When the maximum value is reached for
the identity column, DB2 will cycle back
to the beginning to begin reassigning
values - which might not be the desired
approach.

If you can live with these caveats, then identity
columns might be useful to your applications.
However, in general, these "problems" make
identity columns a very niche solution. IBM
has intentions to rectify some of these
problems over time in upcoming versions of
DB2.

SEQUENCE Objects

But remember, DB2 has two methods of
automatically generating sequential numbers.
The first method is to define an identity
column for the table; the second is to create a
SEQUENCE object. A SEQUENCE object is a
separate structure that generates sequential
numbers.

New to DB2 V8, a SEQUENCE is a database
object specifically created to generate
sequential values. So, a using a SEQUENCE
object requires the creation of a database
object; using an identity column does not.

A SEQUENCE objects is created using the
CREATE SEQUENCE statement.

When the SEQUENCE object is created it can
be used by applications to “grab” a next
sequential value for use in a table. SEQUENCE
objects are ideal for generating sequential,
unique numeric key values. A sequence can be
accessed and incremented by many
applications concurrently without the hot
spots and performance degradation

associated with other methods of generating
sequential values.

Sequences are designed for efficiency and to
be used by many users at the same time
without causing performance problems.
Multiple users can concurrently and efficiently
access SEQUENCE objects because DB2 does
not wait for a transaction to COMMIT before
allowing the sequence to be incremented
again by another transaction.

An example creating a SEQUENCE object
follows:

CREATE SEQUENCE ACTNO_SEQ
 AS SMALLINT
 START WITH 1
 INCREMENT BY 1
 NOMAXVALUE
 NOCYCLE
 CACHE 10;

This creates the SEQUENCE object named
ACTNO_SEQ. Now it can be used to generate a
new sequential value, for example

INSERT INTO DSN8810.ACT
 (ACTNO, ACTKWD, ACTDESC)
 VALUES
 (NEXT VALUE FOR ACTNO_SEQ,
 ‘TEST’, ‘Test activity’);

The NEXT VALUE FOR clause is known as a
sequence expression. Coding the sequence
expression causes DB2 to use the named
SEQUENCE object to automatically generate
the next value. You can use a sequence
expression to request the previous value that
was generated. For example

SELECT PREVIOUS VALUE FOR ACTNO_SEQ
INTO :IVAR
FROM DSN8810.ACT;

As you can see, sequence expressions are not
limited to INSERT statements, but can be used
in UPDATE and SELECT statements, too.

Caution: If you specify the NEXT VALUE FOR
clause more than once in the same SQL
statement DB2 will return the same value for
each NEXT VALUE FOR specification.

SEQUENCE Object Parameters

Similar to identity columns, a SEQUENCE
object has parameters to control the starting
point for the generated sequential values, and
the number by which the count is
incremented. You can also specify the data
type to be generated (the default is INTEGER).
You can also specify a minimum value
(MINVALUE) and a maximum value
(MAXVALUE) if you wish to have further control
over the values than is provided by the data
type chosen.

Again, as with identity columns, you can
specify how the SEQUENCE should handle
running out of values when the maximum
value is hit. Specifying the CYCLE keyword will
cause the SEQUENCE object to wrap around
and begin generating values from the
minimum value all over again.

A final consideration for SEQUENCE objects is
caching. Sequence values can be cached in
memory to facilitate better performance. The

size of the cache specifies the number of
sequence values that DB2 will pre-allocate in
memory. In the previous example CACHE 10
indicates that ten sequence values will be
generated and stored in memory for
subsequent use. Of course, you can turn off
caching by specifying NO CACHE. With caching
turned off each new request for a sequence
number will cause I/O to the DB2 Catalog
(SYSIBM.SYSSEQUENCES) to generate the next
sequential value.

SEQUENCE Object Guidelines

DB2 does not wait for an application that has
incremented a sequence to commit before
allowing the sequence to be incremented
again by another application. Applications can
use one sequence for many tables, or create
multiple sequences for use of each table
requiring generated key values. In either case,
the applications control the relationship
between the sequences and the tables.

The name of the SEQUENCE object indicates
that we are going to use it to generate activity
numbers (ACTNO), but its usage is not limited
to that. Of course, failure to control the use of
a SEQUENCE object can result in gaps in the
sequential values. For example, if we use the
ACTNO_SEQ object to generate a number for a
different column, the next time we use it for
ACTNO there will be a gap where we
generated that number.

Other scenarios can cause gaps in a
SEQUENCE, too. For example, issuing a
ROLLBACK after acquiring a sequence number
will not roll back the value of the sequence
generator - so that value is lost. A DB2 failure
can also cause gaps because cached sequence
values will be lost.

Please note, too, that when sequences were
introduced in non-mainframe DB2, syntax was
supported that did not conform to the SQL
standard. This non-standard syntax is
supported on the mainframe as well:

· NEXTVAL can be used in place of NEXT
VALUE; and

· PREVVAL can be used in place of
PREVIOUS VALUE.

Choosing Between IDENTITY and SEQUENCE

Although both identity columns and
SEQUENCE objects are useful for generating
incremental numeric values, you will be
confronted with situations where you will have
to choose between the two. Consider the
following criteria for when to use one instead
of the other. Identity columns are useful
when:

· Only one column in a table requires
automatically generated values

· Each row requires a separate value

· An automatic generator is desired for a
primary key of a table

· The LOAD utility is not used to load data
into the table

· The process of generating a new value is
tied closely to inserting into a table,
regardless of how the insert happens

SEQUENCE objects are useful when:

· Values generated from one sequence
are to be stored in more than one table

· More than one column per table
requires automatically generated values
(multiple values may be generated for
each row using the same sequence or
more than one sequence)

· The process of generating a new value is
independent of any reference to a table

Unlike SEQUENCE objects, which are more
flexible, identity columns must adhere to
several rigid requirements. For example, an
IDENTITY column is always defined on a single
table and each table can have at most one
IDENTITY column. Furthermore, when you
create an IDENTITY column, the data type for
that column must be numeric; not so for

sequences. If you used a SEQUENCE object to
generate a value you could put that generated
into a CHAR column, for example. Finally,
when defining an IDENTITY column you
cannot specify the DEFAULT clause and the
column is implicitly defined as NOT NULL.
Remember, DB2 automatically generates the
IDENTITY column’s value, so default values
and nulls are not useful concepts.

Consult Table 1 for a summary comparison of
sequences and identity column characteristics.

Table 1. Identity Columns Versus Sequence
Objects.

Identity Columns Sequence Objects
Internal objects generated and maintained
by DB2

Standalone database objects created
by a DBA

Associated with a single table Not associated with a specific table;
usable across tables

Use IDENTITY_VAL_LOCAL() to get last
value assigned

Use PREVIOUS VALUE FOR seq-
expr to get last value assigned

N/A Use NEXT VALUE FOR seq-expr to
get next value to be assigned

Add/change using ALTER TABLE
...ALTER COLUMN (DB2 V8 only)
 ...ALTER COLUMN (DB2 V8
only)

Administer using ALTER
SEQUENCE, DROP, COMMENT,
GRANT, and REVOKE

Version 6 refresh; Version 7 Version 8

Summary

Both identity columns and SEQUENCE objects
can be used to automatically generate
sequential values for DB2 columns. Prior to
Version 8, identity columns are your only
option. However, after you move to V8,
SEQUENCE objects will provide more flexibility
and be easier to use than the identity column
option.

Happy sequential value generation with DB2!

From DB2 Update (Xephon) February 2004.

© 2004 Craig S. Mullins, All rights reserved.
Home.

http://www.craigsmullins.com/

