
 Craig S. Mullins
 Database Performance Management

Return to Home Page

February 2007

 Efficient SQL Coding Basics

By Craig S. Mullins

When it comes to assuring optimal performance of DB2 applications,
coding properly formulated SQL is an imperative. Most relational experts
agree that poorly coded SQL and application code is the cause of most
performance problems – perhaps as high as 75% of poor relational
performance is caused by “bad” SQL and application code.

But writing efficient SQL statements can be a tricky proposition. This is
especially so for programmers and developers new to a relational
database environment. So, before we delve into the specifics of coding
SQL for performance, it is best that we take a few moments to review
SQL basics.

The Basics

SQL, an acronym for Structured Query Language, is a powerful tool for
manipulating data. It is the de facto standard query language for relational
database management systems and is used not just by DB2, but also by
the other leading RDBMS products such as Oracle, Sybase, and
Microsoft SQL Server.

http://www.craigsmullins.com/

SQL is a high-level language that provides a greater degree of abstraction
than do procedural languages. Most programming languages require that
the programmer navigate data structures. This means that program logic
needs to be coded to proceed record-by-record through data elements in
an order determined by the application programmer or systems analyst.
This information is encoded in program and is difficult to change after it
has been programmed.

SQL, on the other hand, is fashioned so that the programmer can specify
what data is needed, and not how to retrieve it. SQL is coded without
embedded data-navigational instructions. DB2 analyzes the SQL and
formulates data-navigational instructions "behind the scenes." These
data-navigational instructions are called access paths. By having the
DBMS determine the optimal access path to the data, a heavy burden is
removed from the programmer. In addition, the database can have a better
understanding of the state of the data it stores, and thereby can produce a
more efficient and dynamic access path to the data. The result is that
SQL, used properly, can provide for quicker application development.

Another feature of SQL is that it is not merely a query language. The
same language used to query data is used also to define data structures,
control access to the data, and insert, modify, and delete occurrences of
the data. This consolidation of functions into a single language eases
communication between different types of users. DBAs, systems
programmers, application programmers, systems analysts, and end users
all speak a common language: SQL. When all the participants in a project
are speaking the same language, a synergy is created that can reduce
overall system-development time.

Arguably, though, the single most important feature of SQL that has
solidified its success is its capability to retrieve data easily using English-
like syntax. It is much easier to understand the following than it is to
understand pages and pages of program source code.

 SELECT LASTNAME
 FROM EMP
 WHERE EMPNO = '000010';

Think about it; when accessing data from a file the programmer would
have to code instructions to open the file, start a loop, read a record,

check to see if the EMPNO field equals the proper value, check for end
of file, go back to the beginning of the loop, and so on.

SQL is, by nature, quite flexible. It uses a free-form structure that gives
the user the ability to develop SQL statements in a way best suited to the
given user. Each SQL request is parsed by the DBMS before execution to
check for proper syntax and to optimize the request. Therefore, SQL
statements do not need to start in any given column and can be strung
together on one line or broken apart on several lines. For example, the
following SQL statement is equivalent to the previously listed SQL
statement:

 SELECT LASTNAME FROM EMP WHERE EMPNO = '000010';

Another flexible feature of SQL is that a single request can be formulated
in a number of different and functionally equivalent ways. One example
of this SQL capability is that it can join tables or nest queries. A nested
query always can be converted to an equivalent join. Other examples of
this flexibility can be seen in the vast array of functions and predicates.
Examples of features with equivalent functionality are:

· BETWEEN versus <= / >=

· IN versus a series of predicates tied together with AND

· INNER JOIN versus tables strung together in the FROM
clause separated by commas

· OUTER JOIN versus a simple SELECT, with a UNION, and a
correlated subselect

· CASE expressions versus complex UNION ALL statements

This flexibility exhibited by SQL is not always desirable as different but
equivalent SQL formulations can result in extremely differing
performance. The ramifications of this flexibility are discussed later in
this paper with guidelines for developing efficient SQL.

As mentioned, SQL specifies what data to retrieve or manipulate, but
does not specify how you accomplish these tasks. This keeps SQL
intrinsically simple. If you can remember the set-at-a-time orientation of
a relational database, you will begin to grasp the essence and nature of
SQL. A single SQL statement can act upon multiple rows. The capability
to act on a set of data coupled with the lack of need for establishing how
to retrieve and manipulate data defines SQL as a non-procedural
language.

Because SQL is a non-procedural language a single statement can take
the place of a series of procedures. Again, this is possible because SQL
uses set-level processing and DB2 optimizes the query to determine the
data-navigation logic. Sometimes one or two SQL statements can
accomplish tasks that otherwise would require entire procedural programs
to do.

The Optimizer

The optimizer is the heart and soul of DB2. It analyzes SQL statements
and determines the most efficient access path available for satisfying each
statement. It accomplishes this by parsing the SQL statement to
determine which tables and columns must be accessed. It then queries
system information and statistics stored in the DB2 system catalog to
determine the best method of accomplishing the tasks necessary to satisfy
the SQL request.

The optimizer is equivalent in function to an expert system. An expert
system is a set of standard rules that when combined with situational data
can return an expert opinion. For example, a medical expert system takes
the set of rules determining which medication is useful for which illness,
combines it with data describing the symptoms of ailments, and applies
that knowledge base to a list of input symptoms. The DB2 optimizer
renders expert opinions on data retrieval methods based on the situational
data housed in DB2’s system catalog and a query input in SQL format.

The notion of optimizing data access in the DBMS is one of the most
powerful capabilities of DB2. Remember, access to DB2 data is achieved
by telling DB2 what to retrieve, not how to retrieve it. Regardless of how
the data is physically stored and manipulated, DB2 and SQL can still
access that data. This separation of access criteria from physical storage

characteristics is called physical data independence. DB2's optimizer is
the component that accomplishes this physical data independence.

If indexes are removed, DB2 can still access the data (albeit less
efficiently). If a column is added to the table being accessed, the data can
still be manipulated by DB2 without changing the program code. This is
all possible because the physical access paths to DB2 data are not coded
by programmers in application programs, but are generated by DB2.

Compare this with non-DBMS systems in which the programmer must
know the physical structure of the data. If there is an index, the
programmer must write appropriate code so that the index is used. If the
index is removed, the program will not work unless changes are made.
Not so with DB2 and SQL. All this flexibility is attributable to DB2's
capability to optimize data manipulation requests automatically.

The optimizer performs complex calculations based on a host of
information. To simplify the functionality of the optimizer, you can
picture it as performing a four-step process:

1. Receive and verify the syntax of the
SQL statement.

2. Analyze the environment and
optimize the method of satisfying
the SQL statement.

3. Create machine-readable
instructions to execute the
optimized SQL.

4. Execute the instructions or store
them for future execution.

The second step of this process is the most intriguing. How does the
optimizer decide how to execute the vast array of SQL statements that
can be sent its way?

The optimizer has many types of strategies for optimizing SQL. How
does it choose which of these strategies to use in the optimized access
paths? IBM does not publish the actual, in-depth details of how the
optimizer determines the best access path, but the optimizer is a cost-
based optimizer. This means that the optimizer will always attempt to
formulate an access path for each query that reduces overall cost. To
accomplish this, the DB2 optimizer applies query cost formulas that
evaluate and weigh four factors for each potential access path: the CPU
cost, the I/O cost, statistical information in the DB2 system catalog, and
the actual SQL statement.

Guidelines for Performance

So, keeping the information about the DB2 optimizer in mind, the
following guidelines can be implemented to facilitate better SQL
performance:

1) Keep DB2 statistics up-to-date: Without the statistics stored in DB2’s
system catalog, the optimizer will have a difficult time optimizing
anything. These statistics provide the optimizer with information
pertinent to the state of the tables that will be accessed by the SQL
statement that is being optimized. The type of statistical information
stored in the system catalog include:

· Information about tables including the total number of rows,
information about compression, and total number of pages;

· Information about columns including number of discrete
values for the column and the distribution range of values
stored in the column;

· Information about table spaces including the number of active
pages;

· Current status of the index including whether an index exists
or not, the organization of the index (number of leaf pages and
number of levels), the number of discrete values for the index
key, and whether the index is clustered;

· Information about the table space and index
nodegroups or partitions.

Statistics are gathered and stored in DB2’s system catalog when the
RUNSTATS or RUN STATISTICS utility is executed. This utility can be
invoked from the Control Center, in batch jobs, or using the command
line processor. Be sure to work with your DBA to ensure that statistics
are accumulated at the appropriate time, especially in a production
environment.

2) Build appropriate indexes: Perhaps the single most important thing
that can be done to assure optimal DB2 application performance is
creating correct indexes for your tables based on the queries used by your
applications. Of course, this is easier said than done. But we can start
with some basics. For example, consider the following SQL statement:

 SELECT LASTNAME, SALARY
 FROM EMP
 WHERE EMPNO = '000010'
 AND DEPTNO = 'D01';

What index or indexes would make sense for this simple query? The
short answer is “it depends.” Let’s discuss what it depends upon! First,
think about all of the possible indexes that could be created. Your first
short list probably looks something like this:

· Index1 on EMPNO

· Index2 on DEPTNO

· Index3 on EMPNO and DEPTNO

This is a good start and Index3 is probably the best of the lot. It allows
DB2 to use the index to immediately lookup the row or rows that satisfy
the two simple predicates in the WHERE clause. Of course, if you
already have a lot of indexes on the EMP table you might want to
examine the impact of creating yet another index on the table. Factors to
consider include:

· Modification impact: DB2 will automatically maintain
every index that you create. This means that every INSERT
and every DELETE to this table will cause data to be
inserted and deleted not just from the table, but also from its
indexes. And if you UPDATE the value of a column that is
in an index, the index will also be updated. So, indexes
speed the process of retrieval but slow down modification.

· Columns in the existing indexes: If an index already exists
on EMPNO or DEPTNO it might not be wise to create
another index on the combination. However, it might make
sense to change the other index to add the missing column.
But not always because the order of the columns in the
index can make a big difference depending on the query.
For example, consider the following query:

 SELECT LASTNAME, SALARY
 FROM EMP
 WHERE EMPNO = '000010'
 AND DEPTNO > 'D01';

In this case, EMPNO should be listed first in the index. And
DEPTNO should be listed second allowing DB2 to do a
direct index lookup on the first column (EMPNO) and then
a scan on the second (DEPTNO) for the greater-than.

Furthermore, if indexes already exist for both columns (one
for EMPNO and one for DEPTNO) DB2 potentially can
use them both to satisfy this query so creating another index
may not be necessary.

· Importance of this particular query: The more important
the query the more you may want to tune by index creation.
For example, if you are coding a query that will be run
every day by the CIO, you will want to make sure that it
performs optimally. Who wants to risk a call from the CIO
complaining about performance? So building indexes for
that particular query is very important. On the other hand, a
query for a low-level clerk may not necessarily be weighted
as high, so that query may have to make due with the
indexes that already exist. Of course, the decision depend
on the importance of the application to the business – not
just on the importance of the user of the application.

There is much more to index design than we have covered so far.
For example, you might consider index overloading to achieve
index only access. If all of the data that a SQL query asks for is
contained in the index, DB2 may be able to satisfy the request
using only the index. Consider our previous SQL statement. We
asked for LASTNAME and SALARY given information about
EMPNO and DEPTNO. And we also started by creating an index
on the EMPNO and DEPTNO columns. If we include
LASTNAME and SALARY in the index as well then we never
need to access the EMP table because all of the data we need exists
in the index. This technique can significantly improve performance
because it cuts down on the number of I/O requests.
Keep in mind, though, that it is not prudent (or even possible) to
make every query an index only access. This technique should be
saved for particularly troublesome or important SQL statements.

SQL Coding Guidelines

When you are writing your SQL statements to access DB2 data be sure to
follow the subsequent guidelines for coding SQL for performance. These
are certain very simple, yet important rules to follow when writing your
SQL statements. Of course, SQL performance is a complex topic and to
understand every nuance of how SQL performs can take a lifetime. That
said, adhering to the following simple rules puts you on the right track to
achieving high-performing DB2 applications.

1) The first rule is to always provide only the exact columns that
you need to retrieve in the SELECT-list of each SQL SELECT
statement. Another way of stating this is “do not use SELECT *”.
The shorthand SELECT * means retrieve all columns from the
table(s) being accessed. This is fine for quick and dirty queries but
is bad practice for inclusion in application programs because:

· DB2 tables may need to be changed in the future to include
additional columns. SELECT * will retrieve those new
columns, too, and your program may not be capable of
handling the additional data without requiring time-
consuming changes.

· DB2 will consume additional resources for every column
that requested to be returned. If the program does not need
the data, it should not ask for it. Even if the program needs
every column, it is better to explicitly ask for each column
by name in the SQL statement for clarity and to avoid the
previous pitfall.

2) Do not ask for what you already know. This may sound
simplistic, but most programmers violate this rule at one time
or another. For a typical example, consider what is wrong with
the following SQL statement:

 SELECT EMPNO, LASTNAME, SALARY
 FROM EMP
 WHERE EMPNO = '000010';

Give up? The problem is that EMPNO is included in the
SELECT-list. You already know that EMPNO will be equal to
the value '000010' because that is what the WHERE clause
tells DB2 to do. But with EMPNO listed in the WHERE clause
DB2 will dutifully retrieve that column too. This causes
additional overhead to be incurred thereby degrading
performance.

3) Use the WHERE clause to filter data in the SQL instead of
bringing it all into your program to filter. This too is a common
rookie mistake. It is much better for DB2 to filter the data before
returning it to your program. This is so because DB2 uses
additional I/O and CPU resources to obtain each row of data. The
fewer rows passed to your program, the more efficient your SQL
will be. So, the following SQL

 SELECT EMPNO, LASTNAME, SALARY
 FROM EMP
 WHERE SALARY > 50000.00;

Is better than simply reading all of the data without the WHERE
clause and then checking each row to see if the SALARY is
greater than 50000.00 in your program.

These rules, though, are not the final word in SQL performance tuning –
not by a long shot. Additional, in-depth tuning will likely be required.
But following the above rules will ensure that you are not making
“rookie” mistakes that can kill application performance.

Summary

In this article we have learned the basics of SQL and coding SQL for
performance. But we have only scraped the tip of the iceberg. You will
need to learn about increasingly complex types of SQL including joins,
subselects, unions, and more; and you will also need to learn how best to
write these SQL statements. You will also need to learn how to discover
the access paths DB2 chose to satisfy your SQL requests. Indeed, there is
much more to learn. But content yourself with the knowledge that you
have embarked on the path of understanding efficient DB2 SQL.

From DB2 Update, February 2007.

© 2007 Craig S. Mullins, All rights reserved.
Home.

http://www.craigsmullins.com/

