
 Craig S. Mullins
Return to Home Page

April 2001

DB2 Table Space Options

By Craig S. Mullins

Although DB2 data is accessed at the table level,
those skilled in DB2 database design and
administration know that the actual data is actually
stored in a structure known as a table space. Each
table space correlates to one or more individual
physical VSAM data sets that are used to house the
actual DB2 data. When designing DB2 databases,
DBAs can choose from three types of table spaces,
each one useful in different circumstances. The three
types of table spaces are:

Simple table spaces
Segmented table spaces
Partitioned table spaces

http://www.craigsmullins.com/

In general, the predominant table space type to use for
most applications is the segmented table space.
Segmented table spaces provide a good combination
of features that mix ease of use and setup with
performance and functionality. Many organizations
adhere to standards stating that new DB2 table spaces
should be segmented table spaces unless a
compelling reason exits to choose one of the other
table space types. You should consider using the other
types of DB2 table spaces in the following cases:

Use partitioned table spaces when you wish to
encourage parallelism. Although DB2 can and will
use parallel access techniques for non-partitioned
table spaces, partitioning data helps DB2 exploit
parallelism.
Consider using partitioned table spaces when the
amount of data to be stored is very large (more
than 1 million pages). You will have more control
over the placement of data in separate underlying
data sets using partitioned table spaces. This is
often a concern with larger DB2 tables.
Use partitioned table spaces to reduce utility
processing time and decrease contention. It is
possible to execute DB2 utilities against single
partitions without impacting concurrent access to
data in other partitions. Furthermore, the utilities

will run faster against a single partition than
against the entire table space and you will have
more control over driving your utility workload. For
example, you may not have sufficient time in the
batch window to run a REORG of a four million
page segmented table space, but you might have
the time to run a REORG of one partition of that
table space nightly. With four partitions of one
million pages (or perhaps more partitions
containing even fewer pages) you may be able to
REORG one partition a night.
Implement partitioned table spaces to improve
data availability. For example, if the data is
partitioned by region, the partitions for the
Eastern, Southern, and Northern regions can be
made available while the Western region partition
is being reorganized.
Use partitioned table spaces to improve
recoverability. Once again, consider the
ramifications if the data is partitioned by region. If
an error impacts data for the Eastern region only,
then only the Eastern partition needs to be
recovered. The Southern, Northern, and Western
regions can remain online, because they are not

impacted by the problem in the Eastern region’s
data.
Consider partitioned table spaces to isolate
specific data areas in dedicated data sets. If there
are specific data “hot spots” that have higher data
modification and/or access activity, you may be
able to improve application performance by
isolating the “hot spot” into a single partition that
can be tuned for the specific type of application
access.
Use a simple table space only when you need to
mix data from different tables on one page. Simple
table spaces will mix data from each table
assigned to the table space on each table space
page. A segmented table space will not because
each segment in the segmented table space is
assigned to a single table. If you have two tables
that are very frequently joined you might consider
loading them into a single simple table space,
ensuring that each row loaded from the first table
is immediately followed by all of the rows from the
second table that will be joined to the first table.
This can minimize I/O for retrieval. However, DB2
will not maintain this ordering when the data is

changed, so this approach is generally useful only
for static data.

Partitioning Considerations

DB2 can handle up to 254 partitions per table space.
The actual limit on number of partitions depends on the
DSSIZE of the table space. Large table spaces are
those which specify the LARGE parameter or have a
DSSIZE greater than 4GB. The LARGE parameter was
introduced with V5; DSSIZE with V6. A large table
space can have from 1 to 254 partitions. Non-large
table spaces are limited to no more than 64 partitions,
as are any table spaces created in a version prior to
DB2 V5.

For non-LARGE partitioned table spaces, the number
of partitions impacts the maximum size of the data set
partition as follows:

Number of Partitions Maximum Data Set Size

 1 to 16 4 GB

 17 to 32 2 GB

 33 to 64 1 GB

Keep these limitations in mind as you design your
partitioned table spaces.

As a general rule of thumb try to define table space
partitions such that no one partition is more than 20
percent larger than the next largest partition. This
provides even growth, which eases DASD monitoring
and provides approximately even data access
requirements and utility processing times across
partitions. This is not a hard-and-fast rule though,
especially when dealing with “hot spots.” The “hot spot”
partition may be much smaller than the other partitions
going against the idea of maintaining evenly distributed
partitions. This is okay.

Deciding to use a partitioned table space is not as
simple as merely determining the size of the table. In
the early days of DB2, size was the primary
consideration for choosing a partitioned table space.
However, as DB2 has matured and the applications
written using DB2 have become modernized,
additional considerations will impact your partitioning
decisions. Application-level details, such as data
contention, performance requirements, degree of
parallelism, and the volume of updates to columns in
the partitioning index must factor into the decision to
use partitioned table spaces.

Sometimes designers try to avoid partitioned table
spaces by dividing a table into multiple tables, each
with its own table space. This is not wise. Never
attempt to avoid a partitioned table space by
implementing several smaller table spaces, each
containing a subset of the total amount of data. When
proceeding in this manner, the designer usually places

separate tables into each of the smaller table spaces.
This almost always is a bad design decision because it
introduces an uncontrolled and unneeded
denormalization. Furthermore, when data that logically
belongs in one table is separated into multiple tables,
SQL operations to access the data as a logical whole
are made needlessly complex. One example of this
complexity is the difficulty in enforcing unique keys
across multiple tables. Although partitioned table
spaces can introduce additional complexities into your
environment, these complexities never outweigh those
introduced by mimicking partitioning with several
smaller, identical table spaces. To clarify why this idea
is bad, consider these two different ways of
implementing a three “partition” solution:

 The first, recommended way is to create the
table in a single partitioned table space with
three partitions as follows:

CREATE DB DB_SAMP;

CREATE TABLESPACE TS_SAMP IN DB_SAMP
 ERASE NO NUMPARTS 3
 (PART 1
 USING STOGROUP SG_SAMP1
 PRIQTY 2000 SECQTY 50
 COMPRESS NO,

 PART 2

 USING STOGROUP SG_SAMP2
 PRIQTY 4000 SECQTY 150
 COMPRESS YES,

 PART 3
 USING STOGROUP SG_SAMP3
 PRIQTY 1000
 SECQTY 50
 COMPRESS YES)

 LOCKSIZE PAGE BUFFERPOOL BP1 CLOSE
NO;

CREATE TABLE TB_SAMP . . . IN
DB_SAMP.TS_SAMP;

 The second, ill-advised way is to create three
table spaces each with its own table as follows:

CREATE DB DB_SAMP;

CREATE TABLESPACE TS_SAMP1 IN DB_SAMP
 USING STOGROUP SG_SAMP1
 PRIQTY 2000 SECQTY 50
 ERASE NO COMPRESS NO
 LOCKSIZE PAGE BUFFERPOOL BP1 CLOSE
NO;

CREATE TABLESPACE TS_SAMP2 IN DB_SAMP
 USING STOGROUP SG_SAMP2

 PRIQTY 4000 SECQTY 150
 ERASE NO COMPRESS YES
 LOCKSIZE PAGE BUFFERPOOL BP1 CLOSE
NO;

CREATE TABLESPACE TS_SAMP3 IN DB_SAMP
 USING STOGROUP SG_SAMP3
 PRIQTY 1000
 SECQTY 50
 ERASE NO COMPRESS YES
 LOCKSIZE PAGE BUFFERPOOL BP1 CLOSE
NO;

CREATE TABLE TB_SAMP1 . . . IN
DB_SAMP.TS_SAMP1;

CREATE TABLE TB_SAMP2 . . . IN
DB_SAMP.TS_SAMP2;

CREATE TABLE TB_SAMP3 . . . IN
DB_SAMP.TS_SAMP3;

Now consider how difficult it would be to retrieve data
in the second implementation if you did not know which
“partition” the data resides in, or if the data could
reside in multiple partitions.

Using the first example a simple SELECT will work.

SELECT *
FROM TB_SAMP

WHERE COL1 = :HOST-VARIABLE;

In the second example, a UNION is required.

SELECT *
FROM TB_SAMP1
WHERE COL1 = :HOST-VARIABLE
UNION ALL
SELECT *
FROM TB_SAMP2
WHERE COL1 = :HOST-VARIABLE
UNION ALL
SELECT *
FROM TB_SAMP3
WHERE COL1 = :HOST-VARIABLE;

If other tables need to be joined the “solution” becomes
even more complex. Likewise if data must be updated,
inserted, or deleted and you do not know which
“partition” contains the impacted data. The bottom line:
avoid bypassing DB2 partitioning using your own
pseudo-partitions.

Partitioning Pros and Cons

Before deciding to partition a table space, weigh the
pros and cons. Consult the following list of advantages
and disadvantages before implementation:

Advantages of a partitioned table space:

 Each partition can be placed on a different
DASD volume to increase access efficiency.

 Partitioned table spaces are the only type of
table space that can hold more than 64GB of
data (the maximum size of simple and
segmented table spaces). A partitioned table
space with extended addressability (EA-
enabled) can hold up to 16 terabytes of data.
Without being EA-enabled a partitioned table
space can store up to about 1 TB of data.

 Start and stop commands can be issued at the
partition level. By stopping only specific
partitions, the remaining partitions are available
to be accessed thereby promoting higher
availability.

 Free space (PCTFREE and FREEPAGE) can
be specified at the partition level enabling the
DBA to isolate data “hot spots” to a specific
partition and tune accordingly.

 Partitioning can optimize Query I/O, CPU, and
Sysplex parallelism by removing disk
contention as an issue because partitions can
be spread out across multiple devices.

 Table space scans on partitioned table spaces
can skip partitions that are excluded based on

the query predicates. Skipping entire partitions
can improve overall query performance for
table space scans because less data needs to
be accessed.

 The clustering index used for partitioning can
be set up to decrease data contention. For
example, if the table space will be partitioned
by DEPT, each department (or range of
compatible departments) could be placed in
separate partitions. Each department is in a
discrete physical data set, thereby reducing
inter-departmental contention due to multiple
departments coexisting on the same data page.
Note that contention remains for data in non-
partitioned indexes (although this contention
has been significantly reduced by in recent
versions of DB2).

 DB2 creates a separate compression
dictionary for each table space partition.
Multiple dictionaries tend to cause better overall
compression ratios. In addition, it is more likely
that the partition-level compression dictionaries
can be rebuilt more frequently than non-
partitioned dictionaries. Frequent rebuilding of
the compression dictionary can lead to a better
overall compression ratio.

 The REORG, COPY, and RECOVER utilities
can execute on table spaces at the partition

level. If these utilities are set to execute on
partitions instead of on the entire table space,
valuable time can be saved by processing only
the partitions that need to be reorganized,
copied, or recovered. Partition independence
and resource serialization further increase the
availability of partitions during utility processing.

Disadvantages of a partitioned table space:

 Only one table can be defined in a partitioned
table space. This is not necessarily a
disadvantage because most DBAs follow a
one-table-per-table-space rule.

 The columns of the partitioning index cannot
be updated. To change a value in one of these
columns, you must delete the row and then
reinsert it with the new values.

 The range of key values for which data will be
inserted into the table must be known and
stable before you create the partitioning index.
To define a partition, a range of values must be
hard-coded into the partitioning index definition.
These ranges will be used to distribute the
data throughout the partitions. If you provide a
stop-gap partition to catch all the values lower
(or higher) than the defined range, monitor that
partition to ensure that it does not grow

dramatically or cause performance problems if
it is smaller or larger than most other partitions.

 After you define the method of partitioning, the
only way to change it is to ALTER the
partitioning index to change the LIMITKEY
values and reorganize any impacted partitions.
Prior to V6 you had to drop and redefine both
the partitioning index and table space to
change LIMITKEY specifications.

In general, partitioned table spaces are becoming
more useful. You might even want to consider using
partitioning for most table spaces (instead of
segmented), especially if parallelism is an issue. At
least, consider partitioning table spaces that are
accessed in a read only manner by long-running batch
programs. Of course, very small table spaces are
rarely viable candidates for partitioning, even with
DB2’s advanced I/O, CPU, and Sysplex parallelism
features. This is true because the smaller the amount
of data to access, the more difficult it is to break it into
pieces large enough such that concurrent, parallel
processing will be helpful.

When using partitioned table spaces, try to place each
partition of the same partitioned table space on
separate DASD volumes. Failure to do so can
negatively affect the performance of query parallelism
performed against those partitions. Disk drive head
contention will occur because concurrent access is
being performed on separate partitions that co-exist on

the same device. Of course, with some of the newer
storage devices, such as the ESS Shark hardware
from IBM, data set placement is a non-issue because
of the way in which data is physically stored on the
device.

Summary

DB2 provides three different types of table spaces,
each of which has its own distinct set of advantages
and disadvantages for use depending upon the
situation. As a DBA you should understand the
implementation details of each type of table space and
be prepared to choose the right type of table space for
each situation.

From DB2 Update (Xephon) April 2001.

© 2001 Craig S. Mullins, All rights reserved.
Home.

http://www.craigsmullins.com/

