
 Craig S. Mullins
Return to Home Page

October 1995

DB2 Version 4 Outer Join Basics
by Craig S. Mullins

DB2 Version 4 provides a multitude of new features designed to ease
the process of application design and programming. Perhaps the most
desired new feature though is explicit outer join support. Outer joins
will significantly impact the manner in which DB2 applications are
coded. This article will discuss the manner in which outer joins are
supported by DB2 V4 along with examples and suggestions for usage
guidelines.

Various sample SQL statements will be presented in this article.
Variations on the classic employee and department data structures will
be used in these statements. Refer to the following tables to clarify
SQL statements and result:

The EMP Table (Employees)
EMPNO LASTNAME FIRSTNAME WORKDEPT
100 Tater Paul INT
200 Workerbee Fred HR
300 Merlin Joe DBA
400 Gump George DIS

http://www.craigsmullins.com/

The DEPT Table (Departments)
DEPTNO DEPTNAME
INT International
HR Human Resources
DBA Database Administration
FIN Finance

The Basics of Joining
The capability to query data from multiple tables using a single SQL
statement is known as a join. Join capability has existed in DB2 from
the very beginning (from Version 1 through Version 3). The technical
term for this type of join is inner join. Consider two tables, EMP and
DEPT, containing information on employees and the departments in
which they work. The following SQL statement will produce a list of
employees and the name of the department in which each works:

SELECT E.EMPNO, E.LASTNAME, D.DEPTNAME
FROM EMP E,
 DEPT D
WHERE E.WORKDEPT = D.DEPTNO;

This is an example of an inner join. An inner join will match the data
based on the values of one or more columns in each table. In the
example, the WORKDEPT column in the EMP table is compared to the
DEPTNO column in the DEPT table. Only rows in which the values
match are combined, creating a result row that is a concatenation of
the columns from each table. If the value of the data in the columns

being matched is not unique, multiple matches might be found for each
row in the table. Conversely, rows that do not have columns that match
will not be retrieved.

The result of running this query will produce the following output:

EMPNO LASTNAME DEPTNAME
100 Tater International
200 Workerbee Human Resources
300 Merlin Database Administration

Notice that the non-matched rows are not returned. The row for
employee 400, Gump, is not returned because there is no match for
the WORKDEPT code of DIS in the DEPT table. Likewise, the row for
the "Finance" department name, FIN, is not returned because there
are no employees that work in that department in the EMP table. What
is an Outer Join? Because of the inherent functionality of the inner join,
it can pose problems when users require not only rows that match
based on the predicate, but also those rows that do not match. For
example, if an employee is temporarily not assigned to a department,
we still might want that information to appear in the result set of the
previous query. As it is presently written, this information will not be
returned when the query is executed.

This is where the outer join is useful. An outer join causes rows in one
of the tables having no match in the other to appear in the result set.
The missing column positions in the result set will contain nulls. This is
necessary because sometimes the results will contain a value (when
there is a match) and sometimes the results will not contain a value

(when there is no match).

Prior to DB2 V4, there was no explicit SQL operator to perform an
outer join. Instead, a programmer would have to code a relatively
complex SQL statement consisting of a simple SELECT, a UNION, and
a correlated subselect.

The following SQL statement is an example of the outer join code that
was necessary prior to DB2 Version 4:

SELECT E.EMPNO, E.LASTNAME, D.DEPTNAME
FROM EMP E,
 DEPT D
WHERE E.WORKDEPT = D.DEPTNO
UNION
SELECT E.EMPNO, E.LASTNAME, '** NO DEPT NAME **'
FROM EMP E
WHERE NOT EXISTS
 (SELECT D.DEPTNAME
 FROM DEPT D
 WHERE E.WORKDEPT = D.DEPTNO);

The first part of this monstrosity (above the UNION) will return all of the
matching rows. The second part, all of the non-matching rows. This
statement will return all employees in the EMP table. Where there is a
match in the DEPT table the department name will be displayed.
Where there is no match in the DEPT table, place holder text stating
"** NO DEPT NAME **" is returned instead.

DB2 Version 4 simplifies this query significantly:

SELECT EMP.EMPNO, EMP.LASTNAME, DEPT.DEPTNAME
FROM EMP LEFT OUTER JOIN DEPT
ON EMP.WORKDEPT = DEPT.DEPTNO;

The keywords LEFT OUTER JOIN cause DB2 to invoke an outer join
returning rows that have matching values in the predicate columns but
also return unmatched rows from the table on the left side of the join.
In the case of the left outer join example shown, this would be the EMP
table, because it is on the left side of the join clause.

Note that the WHERE keyword is replaced with the ON keyword for
the outer join statement. Additionally, the missing values in the result
set are filled with nulls (not a sample default as shown in the previous
example).

There are three types of outer joins supported by DB2 V4: left outer
join, right outer join, and full outer join. The syntax for the SQL
SELECT statement has been enhanced enabling users to explicitly
specify LEFT OUTER JOIN, RIGHT OUTER JOIN and FULL OUTER
JOIN.

As you might guess, the keywords RIGHT OUTER JOIN cause DB2 to
return rows that have matching values in the predicate columns but
also return unmatched rows from the table on the right side of the join.

So the following query is 100% equivalent to the previous query:

SELECT EMP.EMPNO, EMP.LASTNAME, DEPT.DEPTNAME
FROM DEPT RIGHT OUTER JOIN EMP
ON EMP.WORKDEPT = DEPT.DEPTNO;

The only difference is that the positioning of the DEPT and EMP tables
is switched and a RIGHT OUTER JOIN is employed instead of a LEFT
OUTER JOIN. Additionally, consider the following query:

SELECT EMP.EMPNO, EMP.LASTNAME, DEPT.DEPTNAME
FROM EMP RIGHT OUTER JOIN DEPT
ON EMP.WORKDEPT = DEPT.DEPTNO;

In this example, the rows where there is a department number match
are returned, but unmatched department names are also returned.
This is useful if there are department names in the DEPT table with no
employees assigned to the department.

The remaining outer join option is the FULL OUTER JOIN. It, like all
previous outer joins, returns matching rows from both tables, but it also
returns non-matching rows from both tables; left and right. A FULL
OUTER JOIN can use only the equal (=) comparison operator. Left
and right outer joins are able to use all the comparison operators. An
example of the FULL OUTER JOIN will be shown later in the article.

Basic Outer Join Rules of Thumb
Do not move any explicit outer join statements into a production
environment until you are sure that you will not need to fall back to
DB2 V3. Outer join syntax is supported by DB2 V4 only. If you must fall
back to DB2 V3, any outer join statements will cease to function.

Never code the old style of outer join requiring a simple SELECT,
UNION, and correlated subselect once you have migrated to DB2 V4
and are sure that you will not fall back to a previous release. The new
outer join syntax is easier to code, easier to maintain, and should be
more efficient to execute. The outer join capability of DB2 V4 should
reduce the number of bugs and speed application development time
due solely to the significant reduction in lines of code required.
Furthermore, as IBM improves the optimizer over time, techniques
designed to make outer join more efficient will most likely focus only on
the new, explicit outer join syntax and not on the old, complex SQL
formulation.

Favor coding LEFT OUTER JOIN over RIGHT OUTER JOIN. The
choice is truly arbitrary, but the manner in which DB2 V4 shows
EXPLAIN information makes left outer joins easier to tune. A new,
optional column has been added to the PLAN_TABLE to describe the
type of outer join method being used by a particular SQL join
statement. The JOIN_TYPE column is defined as CHAR(1) NOT NULL
WITH DEFAULT. This column will contain the value "F" for a FULL
OUTER JOIN, "L" for a LEFT OUTER JOIN or RIGHT OUTER JOIN,
or a blank for INNER JOIN or no join. Right outer joins will be
converted to left outer joins in the PLAN_TABLE. So, deciphering the
PLAN_TABLE data is more difficult for a RIGHT OUTER JOIN than for
a LEFT OUTER JOIN.

Outer joins can be combined with another join condition only by AND.
Neither OR nor NOT can be specified!

The keyword OUTER can be removed from any of the outer joins. The
following table provides a listing of equivalent syntax statements:

Outer Join Syntax

Syntax Synonym
LEFT OUTER JOIN LEFT JOIN
RIGHT OUTER JOIN RIGHT JOIN
FULL OUTER JOIN FULL JOIN

When specifying outer joins, remember that the WHERE keyword must
be replaced with the ON keyword.

The COALESCE Function
At times, the COALESCE function may be needed to avoid nulls in the
result columns of OUTER JOIN statements. The COALESCE function
is a synonym for the VALUE function. How can it be useful in an outer
join? Consider the following query:

SELECT EMP.EMPNO, EMP.WORKDEPT, DEPT.DEPTNAME
FROM EMP FULL OUTER JOIN DEPT
ON EMP.WORKDEPT = DEPT.DEPTNO;

This query will return the following results:

EMPNO WORKDEPT DEPTNAME
100 INT International
200 HR Human Resources

300 DBA Database Administration
400 DIS ---
--- --- Finance

Note that the department code for Finance is not displayed, even
though we know by simple browsing of the DEPT table that the code is
FIN. Well, the query requests that the WORKDEPT column from EMP
be returned, not the DEPTNO column from DEPT. This can be rectified
using the COALESCE function. The COALESCE function notifies DB2
to look for a value in both of the listed columns, one from each table in
the outer join (in this case, EMP and DEPT). If a value is found in
either table, it can be returned in the result set. Consider the following
example:

SELECT EMP.EMPNO,
 COALESCE(EMP.WORKDEPT, DEPT.DEPTNO)
 AS DEPTNUM, DEPT.DEPTNAME
FROM EMP FULL OUTER JOIN DEPT
ON EMP.WORKDEPT = DEPT.DEPTNO;

This query will return the following results:

EMPNO DEPTNUM DEPTNAME
100 INT International
200 HR Human Resources
300 DBA Database Administration
400 DIS ---

--- FIN Finance

In this case, the last row of the result set contains the correct
department code. The COALESCE function determined that the
department code was stored in the DEPT.DEPTNO column and
returns the value, instead of the null returned because there was no
corresponding WORKDEPT number.

Column Renaming
The SQL statement we just examined also used another new feature
of DB2 V4 known as column renaming. Using the AS clause, columns
can renamed in a SELECT statement. This is useful for columns
containing data derived from an expression or function. Of course, it
can also be used to simply rename any column, not just those that are
derived.

New Inner Join Syntax
As mentioned earlier, inner join capability has been supported in DB2
since its inception. DB2 Version 4 provides a new, optional syntax for
specifying an inner join. This syntax has been added to provide
compatibility with the new outer join syntax.

Consider, once again, our sample inner join statement:

SELECT E.EMPNO, E.LASTNAME, D.DEPTNAME
FROM EMP E,
 DEPT D
WHERE E.WORKDEPT = D.DEPTNO;

This is the manner in which joins have been specified in all prior
versions and releases of DB2. The tables being joined are separated

in the FROM clause by commas. The WHERE clause indicates the join
predicates. DB2 V4 enables the comma to be replaced by the
keywords INNER JOIN, and the WHERE clause to be replaced with
ON. Our sample inner join thus becomes:

SELECT EMP.EMPNO, EMP.LASTNAME, DEPT.DEPTNAME
FROM EMP INNER JOIN DEPT
ON EMP.WORKDEPT = DEPT.DEPTNO;

This new syntax is optional. The comma and WHERE clause are still
functional for inner joins. However, when INNER JOIN is specified, the
WHERE keyword must be replaced with the ON keyword.

The new inner join syntax may help when training new programmers in
SQL. It was always confusing for neophytes to understand the concept
of a join, when there was no explicit join keyword. Well, now there is!

Synopsis
DB2 Version 4 is the richest new release of DB2 in terms of
programming enhancements in years. And outer join is one of the
biggest impacts to SQL query syntax since DB2's inception. It is wise
to learn these new techniques before your shop migrates to DB2 V4. If
you do, you will be able to take advantage of these new features
immediately, and save yourself and your company many coding
hassles!

From DB2 Update (Xephon), October 1995.

© 1999 Mullins Consulting, Inc. All rights reserved.
Home. Phone: 281-494-6153 Fax: 281-491-0637

http://www.craigsmullins.com/

