
 Craig S. Mullins & Associates,
Inc.
                Database Performance Management

Return to Home Page
June 1998
 

 
 
Wanted: New Type of DBA 
By Craig S. Mullins 
 
Until recently, the domain of a database management
system was, appropriately enough, to store, manage,
and access data. Although these core capabilities are
still required of modern DBMS products, all of the
popular RDBMSs are adding complex features to
integrate procedural logic. Triggers, stored
procedures, and user-defined functions are example
of logic that is tightly coupled to the DBMS. Typically,
as these newer features are exploited, the
administration, design, and management of these
features is assigned to the database administrator
(DBA) by default. But this is not always the best
approach. What is required is an expansion of the role
of database administration. 
 
The Classic Role of the DBA

http://www.craigsmullins.com/


The DBMS spans the enterprise, effectively placing
the DBA on call for the applications of the entire
organization. And the role of the DBA has expanded
over the years. Of course, DBAs still design
databases, but instead of merely performing physical
implementation and administration, DBAs are more
intimately involved with data access. 
 
The nature of the RDBMS requires additional
involvement during the design of data access routines.
This is true because relational optimizer technology
embedded into the RDBMS is used to choose the
access paths to the data. The optimization choices
must be reviewed by the DBA. Program and SQL
design reviews are a vital component of the DBA's job.
Furthermore, DBAs perform most monitoring and
tuning responsibilities. Backup, recover, and
reorganization are just a start. DBAs must use tuning
tools like EXPLAIN, performance monitors, and SQL
analysis tools to proactively administer RDBMS
applications. 
 
Oftentimes, DBAs are not adequately trained in these
areas. It is a distinctly different skill to program than it
is to create well-designed relational databases. Yet,
DBAs quickly learn that they have to be able to
understand application programming techniques to
succeed. 
 
The Trend of Storing Process With Data 
As RDBMS products mature, more functionality is
added. The clear trend is to enable procedural logic to



be stored in the database. The most popular and
robust RDBMSs support three primary forms of
database-administered procedural logic: stored
procedures, triggers, and user-defined functions
(UDFs). 
 
Stored procedures are procedural logic that is
maintained, administered, and executed through the
RDBMS. Stored procedures move application code off
of a client workstation and on to the database server.
This typically results in less overhead because one
client can invoke a stored procedure and cause the
procedure to invoke multiple SQL statements. This is
preferable to the client executing multiple SQL
statements directly because it minimizes network
traffic which can enhance overall application
performance. A stored procedure is not "physically"
associated with any other object in the database. It
can access and/or modify data in one or more tables.
Basically, stored procedures can be thought of as
"programs" that "live" in the RDBMS. 
 
Triggers are event-driven specialized procedures that
are stored in, and executed by, the RDBMS. Each
trigger is attached to a single, specified table. Triggers
can be thought of as an advanced form of "rule" or
"constraint" written using procedural logic. A trigger
can not be directly called or executed; it is
automatically executed (or "fired") by the RDBMS as
the result of an action-usually a data modification to
the associated table. Once a trigger is created it is
always executed when its "firing" event occurs



(update, insert, delete, etc.). 
 
A UDF, or user-defined function, provides a result
based upon a set of input values. UDFs are programs
that can be executed in place of standard, built-in SQL
scalar or column functions. A scalar function
transforms data for each row of a result set; a column
function evaluates each value for a particular column
in each row of the results set and returns a single
value. Once written, and defined to the RDBMS, a
UDF becomes available just like any others built-in
function. 
 
Stored procedures, triggers, and UDFs are just like
other database objects such as tables, views, and
indexes, in that they are controlled by the DBMS.
These objects are often collectively referred to as
server code objects, or SCOs, because they are
program code that is stored and maintained by a
database server as a database object. Depending
upon the particular RDBMS implementation, these
object may or may not "physically" reside in the
RDBMS. They are, however, always registered to, and
maintained in conjunction with, the RDBMS. 
 
Why Are Server Code Objects So Popular? 
The predominant reason for using SCOs is to promote
code reusability. Instead of replicating code on
multiple servers or within multiple application
programs, SCOs enable code to reside in a single
place: the database server. This is preferable to
cannibalizing sections of program code for each new



application that must be developed. SCOs enable
logic to be invoked from multiple processes instead of
being re-coded into each new process every time the
code is required. 
 
An additional benefit of SCOs is increased
consistency. If every user and every database activity
with the same requirements is assured of using the
SCO instead of multiple, replicated code segments,
then the organization can be assured that everyone is
running the same, consistent code. 
 
Another common reason to employ SCOs to enhance
performance. A stored procedure, for example, may
result in enhanced performance because it is typically
stored in parsed (or compiled) format thereby
eliminating parser overhead. Additionally, in a
client/server environment, stored procedures will
reduce network traffic because multiple SQL
statements can be invoked with a single execution of a
procedure instead of sending multiple requests across
the communication lines. 
 
The Procedural DBA 
Once server code objects are coded and made
available to the RDBMS, applications and developers
will begin to rely upon them. Although the functionality
provided by SCOs is unquestionably useful and
desirable, DBAs are presented with a major dilemma.
Now that procedural logic is being stored in the
DBMS, DBAs must grapple with the issues of quality,
maintainability, and availability. How and when will



these objects be tested? The impact of a failure is
enterprise-wide, not relegated to a single application.
This increases the visibility and criticality of these
objects. Who is responsible if they fail? The answer
must be-a DBA. But testing and debugging of code is
not a typical role for DBAs. 
 
With the advent of SCOs, the role of the DBA is
expanding to encompass too many responsibilities for
a single person to perform the job capably. The
solution is to split the DBA's job into two separate
parts based upon the database object to be
supported: data objects or server code objects. 
 
Administering and managing data objects is more in
line with the traditional role of the DBA, and is well-
defined. But DDL and database utility experts can not
be expected to debug procedures and functions
written in C, COBOL, or even procedural SQL.
Furthermore, even though many organizations rely
upon DBAs to be the SQL experts in the company,
often times they are not experts-at least not DML
experts. Simply because the DBA knows the best way
to create a physical database design and DDL, does
not mean he will know the best way to access that
data. 
 
The role of administering the procedural logic in a
RDBMS should fall upon someone skilled in that
discipline. A new type of DBA must be defined to
accommodate server code object and procedural logic
administration. This new role can be defined as a



Procedural DBA. 
 
The Procedural DBA should be responsible for
database management activities that require
programming and similar activities. This includes
primary responsibility for server code objects. Whether
SCOs are actually programmed by the Procedural
DBA may differ from shop-to-shop. This will depend
on the size of the shop, the number of DBAs available,
and the scope of server code object implementation.
Minimally, the Procedural DBA should lead SCO code
reviews and perform SCO administration. Additionally,
the Procedural DBA must be on-call for SCO failures. 
 
Other procedural administrative functions that can be
allocated to the Procedural DBA include application
code reviews, access path review and analysis (from
EXPLAIN or show plan), SQL debugging, complex
SQL analysis, and re-writing queries for optimal
execution. Off-loading these tasks to the Procedural
DBA will enable the traditional, data-oriented DBAs to
concentrate on the actual physical design and
implementation of databases. This should result in
much better designed databases. 
 
The Procedural DBA should still report through the
same management unit as the traditional DBA and not
through the application programming staff. This
enables better skills sharing between the two distinct
DBA types. There must be a high degree of synergy
between the Procedural DBA and the application
programmer. The typical job path for the Procedural



DBA should grow from the programming ranks
because this is where the coding skill-base exists. 
 
Synopsis 
As businesses implement server code objects to
support business rules in their applications, database
administration becomes more complex. The role of the
DBA is rapidly expanding to the point where no single
professional can be reasonably expected to be an
expert in all facets of the job. It is high time that the job
be explicitly defined into manageable components,
starting with the Procedural DBA. 
 
From Computing News and Review, June 1998. 
 
© 1999 Mullins Consulting, Inc. All rights reserved.
Home.   Phone: 281-494-6153   Fax: 281-491-0637

http://www.newsrev.com/
http://www.craigsmullins.com/

