
 Craig S. Mullins

Return to Home Page
September 1998

Defining Database Performance

By Craig S. Mullins

Most organizations monitor and tune the performance
of their IT infrastructure. This infrastructure
encompasses servers, networks, applications,
desktops, and databases. But the performance
management steps taken are almost always reactive.
A user calls with a response time problem. A table
space runs out of space to expand. The batch window
extends into the day. Someone submitted that "query
from hell" that just won't stop running. Those of you in
the trenches can relate — you've been there; done
that.

Handling performance problems is truly an enterprise-
wide endeavor. However, the task of enterprise
performance management frequently becomes the job
of the DBA group. Anyone who has worked as a DBA
for any length of time knows that the DBMS is usually

http://www.craigsmullins.com/

"guilty until proven innocent." Every performance
problem gets blamed on the database regardless of its
true source cause. DBAs need to be able research
and decipher the true cause of all performance
degradation, if only to prove that it is not caused by a
database problem. As such, DBAs must be able to
understand at least the basics of the entire IT
infrastructure, but also need to have many friends who
are experts in other related fields (such as networking,
operating systems, communication protocols, etc.).
Possessing a sound understanding of the IT
infrastructure enables DBAs to respond effectively
when performance problems arise. Event-driven tools
exist on the market that can make performance
management easier by automatically invoking pre-
defined actions when specific alerts are triggered. For
example, an alert can be set to proactively reorganize
a database when it reaches its storage capacity. And
other tools exist that can ease the burden of
performance management and analysis. But many of
the supposedly proactive steps taken against
completed applications in production are truly mostly
reactive. Let's face it, DBAs are often too busy taking
care of the day-to-day tactical database administration
tasks to proactively monitor and tune their systems to
the degree they wish they could.

All of this discussion is useful, but it begs the question:
just what do we mean by the term database
performance? You need a firm definition of database
performance before you can learn ways to plan for
efficiency. Think, for a moment, of database

performance using the familiar concepts of supply and
demand. Users demand information from the
database. The DBMS supplies information to those
requesting it. The rate at which the DBMS supplies the
demand for information can be termed "database
performance."

Five factors influence database performance:
workload, throughput, resources, optimization, and
contention.

The workload that is requested of the DBMS defines
the demand. It is a combination of online transactions,
batch jobs, ad hoc queries, data warehousing
analysis, and system commands directed through the
system at any given time. Workload can fluctuate
drastically from day to day, hour to hour, and even
minute to minute. Sometimes workload can be
predicted (such as heavy month-end processing of
payroll, or very light access after 5:30 p.m., when most
users have left for the day), but at other times it is
unpredictable. The overall workload has a major
impact on database performance.

Throughput defines the overall capability of the
computer to process data. It is a composite of I/O
speed, CPU speed, parallel capabilities of the
machine, and the efficiency of the operating system
and system software. The hardware and software
tools at the disposal of the system are known as the
resources of the system. Examples: database kernel,
disk space, cache controllers, and microcode.

The fourth defining element of database performance
is optimization. All types of systems can be optimized,
but relational databases are unique in that query
optimization is primarily accomplished internal to the
DBMS. However, there are many other factors that
need to be optimized (SQL formulation, database
parameters, etc.) to enable the database optimizer to
create the most efficient access paths.

When the demand (workload) for a particular resource
is high, contention can result. Contention is the
condition in which two or more components of the
workload are attempting to use a single resource in a
conflicting way (for example, dual updates to the same
piece of data). As contention increases, throughput
decreases.

Therefore, database performance can be defined as
the optimization of resource use to increase
throughput and minimize contention, enabling the
largest possible workload to be processed. Of course,
I do not advocate managing database performance in
a vacuum. In addition, applications regularly
communicate with other subsystems and components
of the IT infrastructure. Each of these must also be
factored into the overall performance planning of your
organization. But it is wise to place limits on the actual
responsibility for tuning outside the scope of this
definition. If it is not defined above, it probably requires
expertise outside the scope of database
administration. Therefore, performance management

tasks not covered by the above description should be
handled by someone other than the DBA — or at a
minimum shared between the DBA and other
technicians.

A Basic Database Performance Roadmap
A basic plan needs to be forged to ensure that
database performance management and analysis is
accomplished at your site. Following the old 80-20
rule, the first step should be to identify the most
troublesome areas, but this is not as easy as it might
seem! As mentioned in the May edition of this column
("The Most Important Thing is Performance"),
inefficient SQL is the single most prevalent cause of
poor application performance. Finding the SQL
statements that are the most expensive in a large
shop is an extremely difficult thing to do. Resource
hogging SQL statements might be hiding in one of
hundreds or even thousands of programs. Interactive
users who produce dynamic, ad hoc SQL statements
might physically reside anywhere, and any single one
person who is generating ad hoc queries can severely
effect overall production performance.

A good approach is to use an SQL monitor that can
identify all SQL running anywhere in your
environment. Typically, these tools can rank SQL
statements based on the amount of resources being
consumed and track the statement back to who issued
it and from what program it was called. Once you have
identified the top resource consuming statements, you
can concentrate your tuning efforts on the most costly

statements.

However, it is not always obvious how to tune poorly
coded SQL statements to make them better. A plan
analysis tool can be used to identify how the SQL is
currently being satisfied as well as to provide a set of
expert tuning recommendations on how to fix each
inefficient SQL statement. You should also have
additional tools such as the agent-based performance
management solution mentioned earlier as well as
tools to report on DBMS-specific and automation tools
to analyze database objects and system resources.

Summary
Plan on combining a good definition of database
performance with a detailed performance plan specific
to your shop and suite of proactive DBA tools.

From Computing News and Review, September 1998.

© 1999 Mullins Consulting, Inc. All rights reserved.
Home. Phone: 281-494-6153 Fax: 281-491-0637

http://www.newsrev.com/
http://www.craigsmullins.com/

