
© 2013 Mullins Consulting, Inc. 1 August 27, 2013

High-Level Tips & Techniques for DB2 SQL Performance

By Craig S. Mullins

Keeping the basics of DB2 SQL and information about the DB2 optimizer in mind (see last

month’s blog entry titled Coding DB2 SQL for Performance), the following guidelines can

be implemented to facilitate better SQL performance:

1) Keep DB2 statistics up-to-date: Without the statistics stored in DB2’s system catalog,

the optimizer will have a difficult time optimizing anything. These statistics provide the

optimizer with information pertinent to the state of the tables that will be accessed by the

SQL statement that is being optimized. The type of statistical information stored in the

system catalog include:

• Information about tables including the total number of rows, information about

compression, and total number of pages;

• Information about columns including number of discrete values for the column and

the distribution range of values stored in the column;

• Information about table spaces including the number of active pages;

• Current status of the index including whether an index exists or not, the

organization of the index (number of leaf pages and number of levels), the number

of discrete values for the index key, and whether the index is clustered;

• Information about the table space and index nodegroups or partitions.

Statistics are gathered and stored in DB2’s system catalog when the RUNSTATS or RUN

STATISTICS utility is executed. This utility can be invoked from the Control Center, in

batch jobs, or using the command line processor. Be sure to work with your DBA to

ensure that statistics are accumulated at the appropriate time, especially in a production

environment.

2) Build appropriate indexes: Perhaps the single most important thing that can be done to

assure optimal DB2 application performance is creating correct indexes for your tables

based on the queries used by your applications. Of course, this is easier said than done. But

we can start with some basics. For example, consider the following SQL statement:

 SELECT LASTNAME, SALARY

 FROM EMP

 WHERE EMPNO = '000010'

 AND DEPTNO = 'D01';

What index or indexes would make sense for this simple query? The short answer is “it

depends.” Let’s discuss what it depends upon! First, think about all of the possible indexes

that could be created. Your first short list probably looks something like this:

• Index1 on EMPNO

• Index2 on DEPTNO

• Index3 on EMPNO and DEPTNO

© 2013 Mullins Consulting, Inc. 2 August 27, 2013

This is a good start and Index3 is probably the best of the lot. It allows DB2 to use the

index to immediately lookup the row or rows that satisfy the two simple predicates in the

WHERE clause. Of course, if you already have a lot of indexes on the EMP table you

might want to examine the impact of creating yet another index on the table. Factors to

consider include:

• Modification impact: DB2 will automatically maintain every index that you create.

This means that every INSERT and every DELETE to this table will cause data to

be inserted and deleted not just from the table, but also from its indexes. And if you

UPDATE the value of a column that is in an index, the index will also be updated.

So, indexes speed the process of retrieval but slow down modification.

• Columns in the existing indexes: If an index already exists on EMPNO or

DEPTNO it might not be wise to create another index on the combination.

However, it might make sense to change the other index to add the missing

column. But not always because the order of the columns in the index can make a

big difference depending on the query. For example, consider the following query:

 SELECT LASTNAME, SALARY

 FROM EMP

 WHERE EMPNO = '000010'

 AND DEPTNO > 'D01';

In this case, EMPNO should be listed first in the index. And DEPTNO should be

listed second allowing DB2 to do a direct index lookup on the first column

(EMPNO) and then a scan on the second (DEPTNO) for the greater-than.

Furthermore, if indexes already exist for both columns (one for EMPNO and one

for DEPTNO) DB2 potentially can use them both to satisfy this query so creating

another index may not be necessary.

• Importance of this particular query: The more important the query the more you

may want to tune by index creation. For example, if you are coding a query that

will be run every day by the CIO, you will want to make sure that it performs

optimally. Who wants to risk a call from the CIO complaining about performance?

So building indexes for that particular query is very important. On the other hand, a

query for a low-level clerk may not necessarily be weighted as high, so that query

may have to make do with the indexes that already exist. Of course, the decision

depends on the importance of the application to the business – not just on the

importance of the user of the application.

There is much more to index design than we have covered so far. For example, you might

consider index overloading to achieve index only access. If all of the data that a SQL

query asks for is contained in the index, DB2 may be able to satisfy the request using only

the index. Consider our previous SQL statement. We asked for LASTNAME and

SALARY given information about EMPNO and DEPTNO. And we also started by

creating an index on the EMPNO and DEPTNO columns. If we include LASTNAME and

SALARY in the index as well then we never need to access the EMP table because all of

© 2013 Mullins Consulting, Inc. 3 August 27, 2013

the data we need exists in the index. This technique can significantly improve performance

because it cuts down on the number of I/O requests.

Keep in mind, though, that it is not prudent (or even possible) to make every query an

index only access. This technique should be saved for particularly troublesome or

important SQL statements.

SQL Coding Guidelines

When you are writing your SQL statements to access DB2 data be sure to follow the

subsequent guidelines for coding SQL for performance. These are certain very simple, yet

important rules to follow when writing your SQL statements. Of course, SQL performance

is a complex topic and to understand every nuance of how SQL performs can take a

lifetime. That said, adhering to the following simple rules puts you on the right track to

achieving high-performing DB2 applications.

1) The first rule is to always provide only the exact columns that you need to retrieve in

the SELECT-list of each SQL SELECT statement. Another way of stating this is “do

not use SELECT *”. The shorthand SELECT * means retrieve all columns from the

table(s) being accessed. This is fine for quick and dirty queries but is bad practice for

inclusion in application programs because:

• DB2 tables may need to be changed in the future to include additional columns.

SELECT * will retrieve those new columns, too, and your program may not be

capable of handling the additional data without requiring time-consuming

changes.

• DB2 will consume additional resources for every column that requested to be

returned. If the program does not need the data, it should not ask for it. Even if

the program needs every column, it is better to explicitly ask for each column

by name in the SQL statement for clarity and to avoid the previous pitfall.

2) Do not ask for what you already know. This may sound simplistic, but most

programmers violate this rule at one time or another. For a typical example, consider

what is wrong with the following SQL statement:

 SELECT EMPNO, LASTNAME, SALARY

 FROM EMP

 WHERE EMPNO = '000010';

Give up? The problem is that EMPNO is included in the SELECT-list. You already

know that EMPNO will be equal to the value '000010' because that is what the

WHERE clause tells DB2 to do. But with EMPNO listed in the WHERE clause DB2

will dutifully retrieve that column too. This causes additional overhead to be incurred

thereby degrading performance.

3) Use the WHERE clause to filter data in the SQL instead of bringing it all into your

program to filter. This too is a common rookie mistake. It is much better for DB2 to

filter the data before returning it to your program. This is so because DB2 uses

© 2013 Mullins Consulting, Inc. 4 August 27, 2013

additional I/O and CPU resources to obtain each row of data. The fewer rows passed to

your program, the more efficient your SQL will be. So, the following SQL

 SELECT EMPNO, LASTNAME, SALARY

 FROM EMP

 WHERE SALARY > 50000.00;

Is better than simply reading all of the data without the WHERE clause and then

checking each row to see if the SALARY is greater than 50000.00 in your program.

These rules, though, are not the be-all, end-all of SQL performance tuning – not by a long

shot. Additional, in-depth tuning may be required. But following the above rules will

ensure that you are not making “rookie” mistakes that can kill application performance.

Summary

Even after working our way through these high-level guidelines we have still only scraped

the surface when it comes to DB2 SQL performance. You will need to learn about

increasingly complex types of SQL including joins, subselects, unions, and more; and you

will also need to learn how best to write these SQL statements. You will also need to learn

how to discover the access paths DB2 chose to satisfy your SQL requests. Indeed, there is

much more to learn. Keep tuning in to my blog entries on the IBM DB2 Community at

Dell’s Toad World and we’ll explore these topics and more…

